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a b s t r a c t

Infants exploit the perception that others are ‘like me’ to bootstrap social cognition (Meltzoff, 2007a).
This paper demonstrates how the above theory can be instantiated in a social robot that uses itself
as a model to recognize structural similarities with other robots; this thereby enables the student to
distinguish between appropriate and inappropriate teachers. This is accomplished by the student robot
first performing self-discovery, a phase in which it uses actuation–perception relationships to infer its
own structure. Second, the student models a candidate teacher using a vision-based active learning
approach to create an approximate physical simulation of the teacher. Third, the student determines
that the teacher is structurally similar (but not necessarily visually similar) to itself if it can find a neural
controller that allows its self model (created in the first phase) to reproduce the perceived motion of the
teacher model (created in the second phase). Fourth, the student uses the neural controller (created in
the third phase) to move, resulting in imitation of the teacher. Results with a physical student robot and
two physical robot teachers demonstrate the effectiveness of this approach. The generalizability of the
proposed model allows it to be used over variations in the demonstrator: The student robot would still
be able to imitate teachers of different sizes and at different distances from itself, as well as different
positions in its field of view, because change in the interrelations of the teacher’s body parts are used for
imitation, rather than absolute geometric properties.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The field of social robotics attempts to exploit insights from
developmental psychology for the design of adaptive robots. This
approach assumes that increasingly complex behaviors can be
realized in machines by having them learn from humans or other
robots automatically, rather than directly programming behaviors
in. However, in order to do so a robot must autonomously identify
an appropriate teacher, where the quality of a teacher requires
several conditions to be met: the teacher must be located within
sensor range of the student (even though it could still leave,
and return to, the sensory field from time to time); it must
exhibit behaviors that the student can potentially perform; and
it must adaptively expand its demonstrations as the student’s
abilities improve. Thus a major challenge in social robotics is how
best to equip a machine to identify appropriate teachers1 in its
environment. Teacher identification however raises the question
of how a student machine can establish that a candidate teacher is
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sufficiently similar to itself such that social interaction and learning
can take place.

This paper presents a novel approach to the problem of teacher
identification and imitation. It is predicated on the assumption that
the student does not initially have access to a model of itself, nor
that of a candidate teacher. It must therefore build a self model,
a model of a candidate teacher, and determine whether there is
a correspondence between the two. This approach is inspired by
the way infants exploit the perception that others are ‘like me’
as a starting point for social cognition (Meltzoff, 2007a): they
recognize cross-modal equivalences between acts they see others
perform and their own felt bodily movements and this recognition
of self-other equivalences in action gives rise to interpreting others
as having similar psychological states such as perceptions and
emotions. In particular, we instantiate the above theory in a social
student robot that first builds a self model, and then uses this
self-model to discover self-other equivalences with other robots
in its surroundings. Whether such equivalences can be found
therefore enables the student to distinguish an appropriate froman
inappropriate teacher. This work addresses the question of ‘‘whom
to imitate’’, one of the open problems in social cognition and one
of growing centrality for robotics and neuroscience.

The proposed framework consists of three phases: Self discov-
ery, teacher modeling, and teacher imitation. First, the student per-
forms self-discovery, a phase inwhich it uses actuation-perception

http://dx.doi.org/10.1016/j.neunet.2010.07.009
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:kkrishna@uvm.edu
mailto:jbongard@uvm.edu
mailto:josh.bongard@uvm.edu
mailto:meltzoff@u.washington.edu
http://dx.doi.org/10.1016/j.neunet.2010.07.009


1114 K.N. Kaipa et al. / Neural Networks 23 (2010) 1113–1124
relationships to infer its ownmechanical structure. Second, during
teacher modeling, the student models a candidate teacher using a
stereo vision based active learning approach to create an approxi-
mate physical simulation of the teacher. Third, during the teacher
imitation, the success of finding a neural controller that allows
its self model (evolved in the first phase) to imitate the action of
the teacher’s visual model (evolved in the second phase) deter-
mineswhether or not the observed agent is an appropriate teacher.
Fourth, the student uses the neural controller (learnt in the third
phase) to move, resulting in imitation of the appropriate teacher.
This approachwas designed such that teachersmay be deemed ap-
propriate or not even if their visual appearance differs from that of
the student robot. For instance the student robotwould still be able
to imitate teachers of different size and at different distances from
itself, as well as different positions in its field of view, as explained
later. This sort of flexibility is very helpful and has many applied
implications.

This approach differs from other work that address the same
problem in several ways.

1.0.1. Aspects of imitation

Imitation is one of the forms of social learning that enables
robots to learn new skills. Several important aspects of robotic
imitation were summarized by Breazeal and Scassellati (2002) and
Dautenhahn and Nehaniv (2002) who listed the issue of ‘‘whom to
imitate’’ as being one of the key unsolved problems. Most of the
work on imitation-based learning has sidestepped this problem by
defining a fixed role for one agent as being the demonstrator and
another agent as being the imitator (Jansen & Belpaeme, 2006). To
the best of our knowledge, our work is one of the first to address
the issue head on. In particular, the social robotics framework
proposed here offers a robot design that includes the capacity to
observe actions of candidate agents and determine which agent
will be a good teacher that can and should be imitated.

1.0.2. Self-other equivalence

In most robotic imitation-based learning schemes the student
attempts to find a correspondence between the actions of the
teacher and its own behavior repertoire; the teacher’s body struc-
ture could range from being identical (Jansen & Belpaeme, 2006)
to similar and dissimilar (Alissandrakis, Nehaniv, & Dautenhahn,
2007; Coates, Abbeel, & Ng, 2008). However, in all these research
attempts the student assumes that it knows the model of its body
structure a priori. That is, it knows beforehand how its body parts
are attached to each other; the forward kinematics – the mapping
from the joint space to the end effector space – is also known a pri-
ori inmost cases. However, in our approach, we relax that assump-
tion: the student does not know about its own structure a priori;
instead, it performs self-discovery and discovers its own self-
model. Importantly, this self-model shapes its perceptions of can-
didate teachers: if the learned self-model is composed of k body
parts, the student will attempt to model candidate teachers using
the same number of body parts. This in essence helps it to ‘filter
out’ entities that would be poor teachers, such as those with suffi-
ciently different mechanical structures. Once a teacher model has
been created, the student robot actuates its self-model in an at-
tempt to establish a correspondence between the perceived mo-
tions of the modeled teacher.

Within developmental psychology theory, there are opposing
hypotheses about the origins of self-concepts in infants. One view
holds that the young infant learns about itself primarily and at
first through interaction with others (Cooley, 1902; Mead, 1934).
Infants have no prior self-concepts and learn about the possibilities
and powers of their own actions through observing the reactions
of others to their behavior. On the other side, theorists argue
that primitive self-concepts exist prior to such social experience
(Butterworth, 1992; Meltzoff, 2007a). In this view, infants have
a proprioceptive sense of self that derives in part from their
own body movements, which Meltzoff and Moore (1997) have
called ‘‘body babbling’’. In this view a primitive sense of self is
the precondition for successful social interaction rather than an
outcome of it. Infants come to understand others because they are
perceived to be ‘‘like me’’ and the behavior of others is imbued
with felt meaning in part based on the child’s own prior self-
experiences (Meltzoff, 2007b). In the approach adopted here, the
student robot figures out a model of its self to some extent
by self-directed exploration and then uses the discovered self-
model to find out a match with other similar robots that would
be candidates as effective teachers. Our proposal contributes to
knowledge in two ways. It uses computer and robotic modeling
to rigorously investigate the feasibility of the hypothesis that
self-exploration could be a foundational step in developing social
cognition. Reciprocally, it exploits this developmental psychology
theory to help us design a robot that can learn from observing
and imitating experts in the surrounding culture. An improved
understanding of imitation has broad implications for the science
of learning both in man and machine (Meltzoff, Kuhl, Movellan, &
Sejnowski, 2009).

The paper is organized as follows. Prior work on robots learning
by imitation is described in Section 2. The proposed framework and
the methods used are described in Section 3, followed by results
in Section 4 and some discussion in Section 5. Conclusions are
presented in Section 6.

2. Prior work on imitative learning in robots

Robot imitation requires complex mechanisms that map the
observed movement of a teacher (such as another robot or a
human) onto its own movement repertoire. Several researchers
have addressed different aspects of this challenge, known as the
correspondence problem.

Approaches are diverse: The agents used to play the roles
of student and teacher range from anthropomorphic robot arms
(Jansen & Belpaeme, 2006; Schaal, 1997) to simulated robots
(Amit & Mataric, 2002), as well as humanoid robots (Billard &
Schaal, 2001) with redundant degrees of freedom. The nature
of imitation varied from reproducing the demonstrator’s action
(Amit & Mataric, 2002; Billard & Schaal, 2001) to performing an
action that achieves the underlying goal of the observed action
(Jansen & Belpaeme, 2006; Shon, Storz, Meltzoff, & Rao, 2007),
and learning correctly from a ‘flawed’ demonstration (Breazeal,
Berlin, Brooks, Gray, & Thomaz, 2006). In some cases, the student
focussed on observing either the teacher’s bodily movements
(Amit & Mataric, 2002; Billard & Schaal, 2001) or the effect of the
teacher’s interaction with the environment (Jansen & Belpaeme,
2006; Schaal, 1997); accordingly, the observation module ranged
from special data acquisition systems to vision-based acquisition
systems.

Learning fromdemonstrations in robotics is inspired by theway
humans learn from instructions and/or demonstrations by other
humans. Schaal (1997) showed how demonstration can accelerate
learning in the context of reinforcement learning-based control:
an anthropomorphic robot arm learned to balance a pole in just a
single trial by observing a 30 s human demonstration. The robot
was equipped with a 60 Hz video-based stereo vision system, and
the pole was marked with two colors which could be tracked in
real time. The input to the student imitation module was only the
movements of the pole as a function of time: that is, the effect of
the teacher’s interaction with the pole.
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Jansen and Belpaeme (2006) focussed on the problem of how
an agent can knowwhat aspect of the observed teacher’s behavior
it should imitate. They proposed a model which allowed a
student to interpret the demonstrated behavior through repeated
interactions. The student and teacher were simulated robot arms
with identical body configurations; each agent used its end effector
to pick and place three colored blocks on a 2D board comprising
5 × 5 squares. The authors assumed that the teacher and student
both had the same set of actions with which to manipulate their
environment. The student did not observe the action of the teacher;
instead, it observed the effect of the teacher’s actions on the blocks.
Therefore, the student has to resolve a correspondence between
the end effect achieved by their respective action sequences rather
than a correspondence between their bodily movements.

Billard and Schaal (2001) used artificial neural networks
(ANNs) for robot learning by demonstration. A simulated 41-DOF
humanoid implemented the ANN model to reproduce the motion
of a human arm. The demonstrated behavior consisted of left arm
movements for five repetitions of drawing a figure eight. The data
was gathered by a sensor suit that recorded the positions of 35
degrees of freedom of the human body. Therefore, in this work the
student attempted to imitate the bodilymovements of the teacher.

Amit and Mataric (2002) used a hierarchy of three computa-
tional layers – base primitives, movement specializers, and seque-
nce learners – to learn movement sequences from demonstration.
First, each base primitivewas hardwired and used a parameterized
encoding of motor programs to execute a class of movements; dif-
ferentmovements of the same class could be obtained by changing
the parameters. The base primitives had a visuo-motor property in
that they could ascertain the values of the parameters resulting in
the execution of knownmovements that closely approximated the
observed movements. However, the fixed nature of the base prim-
itive layer imposed constraints on the learnable movements of the
system. Second, themovement specializers used information from
base primitives to learn specialized movements. For example, a
base primitive for reachingmovements by the right handwas used
by an associated movement specializer to learn specific reaches,
such as reaching the nose with the same hand. Third, the sequence
learners encoded a probabilistic ordering over the set ofmovement
specializers in order to learn composite movement sequences. The
authors assumed that both the demonstrator and the imitator had
the same kinematic limb structure, and had similar degrees of
freedom in the corresponding joints. A physics-based humanoid
simulation was used to perform a series of learning trials using
synthetic and human motion capture data obtained by a marker-
based capture system. The human demonstrated movements con-
sisted of reaching to various positions, painting-like movements,
and drawing simple figures. Syntheticmotion consisted of aerobic-
style movements like stretching the arm sideways, or taking it to
a vertically upright position. Similar to the work of Billard and
Schaal, the bodily movements of the demonstrator were success-
fully imitated by the student.

Note that in all the above studies, the student learned from a
single teacher, with the assumption that the teacher was imitat-
able. In addition, the student is equipped with a self image a priori;
the forward kinematics, that is the mapping from actuation space
to the end effector space, is known beforehand.

Lopes and Santos-Victor (2007) present a strategy for robotic
imitation using a learning pathway comprising three levels: (i) Lea-
rning about the self; (ii) Learning about objects and the world
and (iii) Learning about others and imitation. In the first level, the
robot learns a sensory-motor map (SMM) by self-exploration that
allows itself to acquire capabilities like vergence control, object
foveation and perception–action coordination. In the second level,
the robot builds a map of the surrounding area (object positions
and identification), studies objects, their properties and how they
are used by others (e.g., develops a closed-loop control behavior
capable of grasping). In the third level, the robot is able to look
at gestures and repeat them. Vision based rectangle-template
matching is used to model the arm position of the demonstrator.

The self-exploration aspect in this work is similar to the self-
discovery performed by the student in our proposed framework.
However, it differs from our approach in two important aspects:
First, the student robot in Lopes and Victor’s study learns a
correspondence between motor actions and camera images that
allow reaching for objects in easy positions. However, it does
not obtain a self-model of its morphology (how its body parts
are attached to each other). Second, the student robot does not
determine whether or not the teacher has an embodiment that is
similar to its own embodiment, as the student robot described in
this paper does.

Alissandrakis et al. (2007) address the problemof bodymapping
in robotic imitation where the demonstrator and imitator may not
share the same embodiment (such as differing DOFs, body morph-
ologies, constraints, and/or affordances). They use correspondence
matrices to characterize partial, mirror symmetric, one-to-one,
one-to-many, many-to-one, and many-to-many associations be-
tween various DOFs across dissimilar embodiments. The authors
show how metrics for behavior matching can be mathematically
determined by such correspondence mappings, which may serve
to guide a robot regarding how to imitate an observed demonstra-
tion. However, the validation of their approach is limited to simu-
lated robots. Also, the student assumes that its kinematic model is
known a priori.

Nyuwa, Katagami, and Nitta (2008) propose a method that
allows a robot to learn from multiple instructors. In particular,
each one of 40 human participants taught a commercial robot
(Sony’s AIBO robot dog) to walk by directly holding and moving
its front two legs. The teaching data from all of the instructors is
classified into groups using clustering. A representative teaching
data set is obtained for each group using averaging. The robot
selects an appropriate solution based on some evaluation criteria
(the distance moved forward and the impact shock for the body)
and then reproduces the movement. This work seems to have
similarity to our work in the sense that the student senses the
actions of multiple teachers in order to learn a new skill. However,
it differs fromourmethod in three respects. First, all of the teachers
have the same body morphologies and they differ only in their
teaching styles. Second, the student’s imitation is not based on a
visual observation of a teacher demonstration. Third, the student
assumes that its self-model is known a priori.

The experimental setup used in all the above approaches
comprises a student learning fromeither a single teacher or a group
of morphologically identical teachers. The student robot does not
determine whether or not the teacher has an embodiment that is
similar to its own embodiment. However, a more complex and a
realistic social interaction scenariowould consist of a student robot
surrounded by multiple, yet morphologically different teacher
robots. As a student’s ability to learn a new skill from a teacher is
affected by how well, or how closely, the student can imitate the
teacher’s action, it is very important that the student is endowed
with an ability to distinguish an appropriate from an inappropriate
teacher. Also, in all the above approaches, the student either
knows its body structure a priori or learns a sensory-motor map
to compute its forward kinematics.

Our attempt in this work is to solve some of these limitations
of the above approaches. A two-DOF robot crawler is used as a
student robot. It is surrounded by two teacher robots whose body
plans are identical with and different from that of the student,
respectively. The student robot uses a stereo camera rig to observe
the actions of a candidate teacher. In the sections that follow,
we describe our proposed social robotics framework, comprising
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(a) (b)

(c)

Fig. 1. Framework overview: (a) Self-discovery; the student robot uses actuation-perception relationships to infer its own body structure. (b) Teacher-modeling; the student
robot models a candidate teacher. (c) Simulating imitation; the student robot learns a neural controller that allows its self model (evolved in the first phase) to imitate the
action of the teacher’s visualmodel (evolved in the second phase). (d) Performing imitation; the student robot uses the learnt neural controller tomove, resulting in imitation.
(e) Evolved self model of the student. (f) Evolved visual model of the appropriate teacher. (g) Neural controller used to actuate the two joints of the self model. (h) Left and
right physical cameras.
the three phases of self-discovery, teacher-modeling, and teacher-
imitation, and demonstrate how it is used by the student robot
to determine whether or not a candidate teacher is an efficient
teacher to learn from.

3. Methods: self discovery, teacher modeling, and teacher
imitation

The proposed social-developmental framework that allows a
student robot to identify an appropriate teacher from a set of ex-
ternal social agents is outlined in Fig. 1. First, the student performs
self-discovery (Fig. 1(a)), a phase in which it uses actuation-
perception relationships to infer its own structure. Second, dur-
ing the phase of teacher modeling (Fig. 1(b)), the student models
a candidate teacher using a vision-based, active learning approach
to create an approximate physical simulation of the teacher. Third,
during the phase of teacher imitation (Fig. 1(c)), the success of find-
ing a neural controller that allows its selfmodel (evolved in the first
phase, Fig. 1(e)) to imitate the action of the teachers visual model
(evolved in the second phase, Fig. 1(f)) determines whether or not
the observed agent is an appropriate teacher. Fourth, the student
uses the neural controller (evolved in the third phase) to move,
resulting in imitation of the appropriate teacher. Each one of the
first three phases is composed of a stochastic optimizer: For self-
discovery, the robot optimizes self-models; for teacher modeling,
it optimizes visual models of an observed teacher; and for teacher
imitation, it optimizes neural controllers used to control its move-
ments.

3.1. Physical robots

The student robot is a two-DOF robot crawler capable of
locomotion by exploiting differential friction between its body and
foot; it is composed of a main body, an upper limb, and a lower
limb. The upper limb is attached to the main body and the lower
limb is attached to the upper limb. The two joints are actuated
by servo motors that can rotate the joints between −90° and 90°.
The default position for the motors (0°) causes the robot to lie flat.
Positive and negative angle commands cause each limb to rotate
downward and upward, respectively. The robot is equipped with
tilt sensors that can measure the orientation of the main body:
how much it is tilted to the left or right and how much forward
or backward. The body plan for the appropriate teacher (Fig. 2(b))
was chosen to be identical to that of the student. However, the
inappropriate teacher has a different body plan (Fig. 2(c)): both its
limbs are attached to either side of the main body.
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Fig. 2. Physical robots: (a) The student robot. (b) The appropriate teacher. (c) The inappropriate teacher.
3.2. Self discovery

The student knows, a priori, that its morphology is composed of
three parts that are attached to each other by two actuated rota-
tional joints; it also knows about the physical properties – shape,
size, and density – of each part. However, it is ignorant of how
the three body parts are attached to each other. The student per-
forms self-discovery using a simplified version of the self dis-
covery method described in Bongard, Zykov, and Lipson (2006):
The actuation-perception relationships extracted from the phys-
ical robot’s response to random actuation commands are used by
a simulated student to evolve its self model.

The student robot begins with a set of assumptions about its
morphology. Those aspects of its morphology that are unknown
(in this case which body parts are connected, and how) form the
space of self-models that the student will search through. These
assumptions include:
1. the student’s morphology is an articulated structure composed

of three parts (the main body, limb la, and limb lb);
2. the main body is a rectangular solid whose dimensions are

14 cm × 11 cm × 5 cm;
3. limb la is a capped cylinder with radius 1 cm and height 20 cm;
4. limb lb is a capped cylinder with radius 1 cm and height 20 cm;
5. the density of each part is 0.6 cm3;
6. each part is attached to one and only one other part by using an

actuated rotational joint;
7. limb la can attach only to the main body and at an angle α ∈

[0°, 360°]; and
8. limb lb can attach either to la (λ = 0) or to the main body

(λ = 1) with an angle of attachment in β ∈ [0°, 360°].

3.2.1. Actuation-perception relationships
Initially, the two joints Ja and Jb of the physical student (Fig. 2(a))

are allowed to respond to a set of 10 randomly-generated actuation
commands {(θj, φj) : j = 1, 2, . . . , 10}, and the resulting orien-
tation of its main body (rxj, ryj) for each action command (θj, φj)
is recorded. The resulting set of actuation-perception relation-
ships is bundled as the set ASR = {(θj, φj, rxj, ryj) : j = 1,
2, . . . , 10}. For illustration purpose, the physical student’s re-
sponses to commands (−49°, 29°), (−54°, 0°), and (−46°, 48°) are
shown in Fig. 3(b)–(d), respectively.
3.2.2. Self models
Next, the student robot creates self models of itself in a three-

dimensional, physically realistic simulation environment.2 For
each self model constructed, the simulator is populated by the
three body parts, and attached together using the parameters
stored in a vector (α, λ, β). Note that each instance of a vector
maps to a different self model.

3.2.3. Optimizing self models
A hill climber is used to search the space of self models. The

set of actuation commands from ASR are fed to the joints of each
self model SM(i). Note that for each SM(i), the same actuation com-
mand (θj, φj) may give rise to a different orientation (sx(i)

j , sy(i)
j )

of the main body. Therefore, the error e(i) of each self model
(α(i), λ(i), β(i)), is the offset in the orientation of SM(i) from that
of the physical robot in response to the common actuation com-
mands from ASR:

e(i)
=

 10−
j=1

(rxj − sx(i)
j )2 + (ryj − sy(i)

j )2. (1)

The search process starts by randomly initializing the genome
(α(0)

= 145°, λ(0)
= 1, and β(0)

= 285° for one of the sample
runs). The genome is mapped to the self model SM(0) as shown
in Fig. 3(e). Its responses to the sample commands (−49°, 29°),
(−54°, 0°), and (−46°, 48°) are shown in Fig. 3(f)–(h), respectively.
The genome’s error e(0) is evaluated using (1). Next, the genome is
subjected to a random mutation and then evaluated. If the child
produced by the mutation has an error lower than that of the
parent, the parent is replaced by the child; otherwise, the child is
discarded. The mutation is achieved by randomly selecting from
one to three variables in the genome and perturbing their values
using a Gaussian distribution. For the binary integer variable λ, if
it is selected for mutation, its value is replaced with a new random
value chosen from [0, 1]. The evolved self models at the midpoint

2 www.ode.org.
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Fig. 3. Self discovery: (a) Physical student robot. (b)–(d) Response of the physical robot to actuation commands (−49°, 29°), (−54°, 0°), and (−46°, 48°), respectively. (e)
The randomly initialized self model SM(0) . (f)–(h) Response of SM(0) to actuation commands (−49°, 29°), (−54°, 0°), and (−46°, 48°), respectively. (i) The self model SM(25)

evolved at the middle of the self discovery phase. (j)–(l) Response of SM(25) to the three actuation commands. (m)–(p) The self model SM(50) evolved at the end of the self
discovery phase and its response to the three actuation commands.
SM(25) and at the end SM(50) of the search process are shown in
Fig. 3(i) and (m), respectively; the corresponding responses to the
three actuation commands are shown in Fig. 3(j)–(l) and (n)–(p),
respectively. Note that the evolved self model SM(50)(α(50)

= 6°,
λ(50)

= 0, β(50)
= 365°) of the simulated student and its responses

to the action commands closely approximate that of the physical
robot. In this way, the student uses self discovery to determine its
own body structure.

Equipped nowwith an autonomously generated self model, the
student observes a candidate teacher and attempts to synthesize a
physical simulation of it.

3.3. Teacher modeling

We describe here how the student robot uses a stereo vision
based active learning approach to observe a teacher robot
(Section 3.3.1) and create a 3D physical simulation of it. A rudi-
mentary version of this process was described in Kaipa, Bongard,
andMeltzoff (2009).We assume that the student robot is equipped
with left and right cameras (Fig. 1(h)) that are trained on the
scene,3 and that we can extract arbitrary pixels from images taken

3 The student uses two cameras that are horizontally separated by 10 cm and
whose axes are parallel in order to capture video footage of the teacher’s act of
forward locomotion.
by them. Our approach is based on carefully selecting a small sub-
set of the total pixels available for creating the teacher models
(Section 3.3.2). A brief overview of the method of optimizing the
teacher models follows (refer to Section 3.3.3 for more details).

We employed the estimation–exploration algorithm (EEA)
(Bongard et al., 2006) to create the teacher models. The EEA is a
stochastic optimization approach to active learning. One stochastic
optimization algorithm improves a population of models to
explain a set of training data; a second stochastic optimization
method improves a population of unseen training points to induce
disagreement among the current model population. Periodically,
an optimized training point that induces model disagreement is
labeled by the target system being modeled, and included in the
training set. This addition deforms the search space in the model
population as models must now be optimized to explain both the
original data as well as the new training point. In this application,
when the student robot models a candidate teacher it maintains
twomodels: each is a three-dimensional simulation of the teacher,
similar to those simulations it has created of its own body plan.
Fig. 4 depicts several of these teacher simulations.

A pixel with an (x, y) index into the student’s camera pair
is considered to be a training datum: the grayscale (henceforth
referred to as luminosity) indices of a pixel at that position in
both cameras is considered to be the two labels associated with
that pixel. For each candidate teacher simulation, two simulated
cameras are placed in the simulation, and each of the training
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Fig. 4. Visual modeling of an external social agent: (a)–(c) A sequence of three
image pairs extracted from the left and right videos of the appropriate teacher’s act
of forward locomotion. (d) The left image of the randomly initialized model A. (e),
(f) The left images of model A evolved at the middle and end of the first pass. (g)–(i)
Second pass of visual model evolution. (j)–(l) Third pass of visual model evolution.

pixel positions is queried for these cameras. The error of a teacher
simulation is then the error between the luminosities of the pixels
drawn from the student’s physical cameras and those drawn from
the virtual cameras in the teacher simulation.

3.3.1. The physical teacher
In the experiments described here, two physical teachers were

used. The first, referred to as the appropriate teacher, has a me-
chanical make-up identical to that of the student robot (Fig. 2(b)).
The second physical teacher robot, henceforth referred to as the
inappropriate teacher, is made of the same three parts as the stu-
dent and appropriate teacher, but has a different topology: both its
limbs are symmetrically attached to either sides of the main body
(Fig. 2(c)).

Fig. 4(a)–(c) shows a sequence of image pairs extracted from
the two video streams when the student robot observed the
appropriate teacher demonstrating a behavior to be imitated.

3.3.2. Teacher models
Each teacher model takes the form of a three-dimensional

simulation, into which are placed several 3D shapes that together
describe the physical teacher robot. Since the student robot knows
that it is composed of three body parts, it attempts to model
a candidate teacher with the same number of body parts. If a
candidate teacher has a different number of body parts from the
student robot, it will not bemodeled as well as a candidate teacher
with the same number of body parts.

Each model is encoded as a number of parameters; these pa-
rameters are used to construct the teacher simulation. In par-
ticular, each object of a model is parameterized by that object’s
shape Ot (a rectangular cuboid, sphere, or capped cylinder), posi-
tion (x, y, z), orientation (ω (roll), ρ (pitch), µ yaw), and size (d1
encodes the radius if the object is a sphere, d1 and d2 encode the
radius and length if the object is a capped cylinder, and d1, d2 and
d3 encode the length, width and height if the object is a rectangular
cuboid).

In the experiments described here, the pitch and yaw of each
object are kept constant (ρ = µ = 0); only the teacher’s
body parts roll around the axis defined by the line of sight from
the cameras to the teacher are modeled by the student. This
methodological decision was made to keep the teacher model
simple by removing two variables, and it seems likely (although
not yet proven) that the teacher’s perceived rotation relative to
the student’s line is more informative than its rotation about other
directional vectors.
A model of a candidate teacher with k = 3 body parts is thus
defined as the vector of parameters

{O(1)
t , x(1), y(1), z(1), ω(1), d(1)

1 , d(1)
2 , d(1)

3 , . . . ,

O(k)
t , x(k), y(k), z(k), ω(k), d(k)

1 , d(k)
2 , d(k)

3 } (2)

where (k) indicates that that parameter describes the kth body
part. These parameters are used to construct a 3D compound object
in a virtual space.

3.3.3. Optimizing the teacher models
With the above framework in place, the modeling problem

can now be solved by carrying out a stochastic search over the
space described by the genome. One possible objective function
is computed as the root mean squared error of the individual
pixel luminosities extracted from the model and those extracted
from the target images evaluated over all the pixels. However,
the process of requesting luminosities from all of the pixels and
using this large set of data in order to compute the above objective
functionwould demand a high computational cost, leading to slow
reaction times on the part of the student robot.

In order to overcome this problem, we have here used
the estimation–exploration algorithm (EEA) in which several
independent models are optimized against a growing set of
training pixels, instead of the full pixel array. In short, images
are taken by the virtual cameras in the each of the teacher
simulations periodically; a pixel is then found that has very
different luminosities in each image, and is added to the training
set. This is referred to as the exploration phase. Between these pixel
extraction events, the teacher simulations are optimized against
this growing set of training data using stochastic optimization. This
process is referred to as the estimation phase.

The EEA was introduced by Bongard and Lipson (2005) as an
application-independent coevolutionary algorithm that automates
both model inference and the generation of useful training
data. The EEA builds on query by committee (Seung, Opper, &
Sompolinsky, 1992), which demonstrated that the optimalmethod
for choosing new training data is throughmodel disagreement. The
EEA uses a stochastic optimization process to optimize the model
set, and a second optimization process to find potential training
data that induces model disagreement. Model optimization and
the search for new training data alternates during modeling. More
specifically, each pass of the EEA consists of two optimization
phases of exploration and estimation.

In the general case, during the exploration phase candidate
training data are sought using stochastic optimization such that,
when supplied to the current model set, the outputs of the models
are maximally divergent. This ensures that if this disagreement-
inducing training data is labeled by the target system, its
response will indicate which models have hidden inaccuracies.
These inaccurate models will then be automatically replaced
during subsequent model optimization in the estimation phase. In
contrast to this, in the field of identification for control (Gevers,
2002), training data is passively collected from the target system
and the model is not used to determine which experiment to
perform next. However, the EEA intelligently chooses new training
data so that the amount of data extracted from the target system
is minimized, yet sufficiently accurate models of it are produced.
The exploration phase: At the outset of each attempt by the student
robot to model a candidate teacher, it first creates two random
models of the teacher A and B that are random instances of the
parameter vector shown in Eq. (2). Each of the two models is
transformed into 3D simulations, and a left and right virtual camera
are placed in each simulation. A sample image taken by the left
camera of a random simulation is shown in Fig. 4(d). Images taken
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by the physical student robot as well as those taken within teacher
simulations have a resolution of 100 × 75 pixels.

A first training pixel is then sought that has different
luminosities between the left images taken within simulations A
and B, as well as between the right images of A and B. This is
accomplished by first creating a candidate pixel set Cp by selecting
1000 pixels using a uniform distribution out of these 7500 pixels.
Each pixel from this set is then evaluated to determine how
much disagreement it induces in the models in terms of their
corresponding luminosities at that pixel’s position. For example
assume that both models describe a small dark object that appears
near the center of the image, but the object’s position is slightly
different in the image of each model. Then, a pixel chosen near
the image center will cause model agreement (both the models
will predict that that pixel will be dark in the left image taken
from the observed scene), as will a pixel taken near a corner of the
image (both the models will predict that that pixel will be light in
the left image taken of the observed scene). However, a pixel near
the object edges in the models may cause them to disagree (one
may predict that pixel will appear dark, while the other model will
predict it will appear light). It is these latter pixels that are useful
for uncovering hidden inaccuracies in the models.

Based on this observation, the error of a candidate pixel i is
computed as

δi = |⌊(ℓ
m1
i /255)⌋ − ⌊(ℓ

m2
i /255)⌋| (3)

where ℓ
mk
i indicates the luminosity of pixel i in the left image

of teacher model k. (This variable ranges in [0, 255].) The pixel
among Cp with the highest value for δ therefore induces maximum
disagreement across the set of pixelsCp, and is definedherein as the
most distinguishingpixel. From (3), note that the pixel luminosities
are collapsed into binary values (‘1’ for white and ‘0’ for all other
gray shades) before evaluating the disagreement. Therefore, δi is a
binary-valued function; that is, the twomodels either totally agree
(δi = 0) or totally disagree (δi = 1) at pixel i.

The most distinguishing pixel is located for the left images, and
the most distinguishing pixel is located for the right images. The
corresponding pixels in the left and right images captured by the
student robot of the candidate teacher are then queried to extract
their luminosities, and are added to the training set. As at each
pass of the exploration phase only 1000 out of 7500 possible pixels
are considered, only 13.33% of the images are used. Since finding
the most distinguishing pixel is the computational bottleneck in
this algorithm, this active learning component leads to an almost
10 × speed-up in the running time of the algorithm.

Once these pixels are found the estimation phase begins, which
optimizes the teachermodels for a short period. After this period of
model optimization, the exploration phase is again executed, with
a new randomly-chosen set of 1000 candidate training pixels.
The estimation phase: In the first pass through the estimation
phase, the two random models are trained against the two most
distinguishing pixels just discovered during the exploration phase.
In subsequent passes through the estimation phase, the two
models optimized in the previous pass are re-optimized against
the original training pixels as well as the two new pixels obtained
during the just-completed exploration phase.

We use a hill climber for teacher model optimization. Let Dl
p(t)

andDr
p(t) be the sets of distinguishing pixels obtained from the left

and right images of candidate teachers after t passes through the
exploration phase, respectively. The error of a candidate teacher
model can then be defined as below:

Lrmse(t) =

N l
dp(t)∑
i=1

(ℓ
lt
i − ℓ

lm
i )2

N l
dp(t)

+

Nr
dp(t)∑
j=1

(ℓ
rt
j − ℓ

rm
j )2

N r
dp(t)

(4)
where i ∈ Dl
p(t), j ∈ Dr

p(t), and N l
dp(t),N

r
dp(t) are the number

of distinguishing pixels collected up to and including iteration t
corresponding to the left and right images, respectively.

At each iteration, the genome of each model is subjected to
randommutation and then evaluated. If the child model produced
by the mutation has a lower error than the parent model, the
parent is replaced with the child; otherwise, the child is discarded.
The mutation is achieved by randomly selecting from one to
five variables in the genome and perturbing their values using a
Gaussian distribution. Since the variables are randomly selected,
a variable may undergo mutation more than once during any
iteration. For the integer object shape variable, if it is selected for
mutation, its value is replaced with a new random value chosen
from [0, 1, 2]. If an object changes shape due to mutation, the
size parameters are altered so that the visual impact on the new
image is slight, and there is therefore little discontinuity between
successive model images. For instance, if a sphere is switched to
a cuboid, the length, height and width of the new cuboid are set
to the original sphere’s circumference. The above optimization
scheme steps through Nest = 8 iterations.
Estimation–exploration algorithm flow: For each run in which the
student robot attempts to model a candidate teacher, it alternates
between the exploration and estimation phase 1000×3 times; one
execution of the exploration phase followed by one execution of
the estimation phase is defined here as one pass through the run. In
the first pass, the teacher models are optimized against two pixels
(one from the left and right images respectively (Fig. 4(a))). Over
the next 1000 passes, a training buffer that can hold 2×1000 pixels
is gradually filled.

Once the training buffer is filled, the student takes a new pair
of images of the candidate teacher (Fig. 4(b)), and discards the
original two images used to assign luminosities to the first 2×1000
training pixels. Over the next 1000 passes, the oldest pixel pair in
the training buffer is overwritten by a new pixel pair produced by
the estimation phase and assigned luminosities by the new image
pair. Once 1000 passes have elapsed, a new image pair (Fig. 4(c)) is
obtained by the student robot and used for assigning luminosities
to training pixels. This process continues until 3000 passes in total
have elapsed. Images are periodically refreshed by the student
robot in this manner because it is assumed that the candidate
teacher is moving.

Over the course of optimizing teacher models (Fig. 4(d)–(l) and
(p)–(x) for appropriate and inappropriate teachers, respectively),
the evolutionary changes across the 1000 passes in the best of the
two model’s parameter sets are recorded: systematic changes in
parameters over themodeling process reflect indirectly themotion
of the candidate teacher, and is used in the third phase: teacher
imitation.

3.4. Teacher imitation

In this section the way in which the student uses the results
from its self-discovery and teacher-modeling phases to imitate the
observed teacher is described. The student’s ability to learn a new
skill from a teacher requires first that the student is physically able
to imitate a candidate teacher. Therefore, it is imperative for the
student to identify appropriate teachers and learn to ignore any
inappropriate teachers in its surroundings.

Consequently, in this phase (Fig. 1(c)), the student attempts
to optimize a neural controller (Section 3.4.1) such that its self
model (evolved in the first phase) imitates the actions of the
teacher’s model (evolved in the second phase). If the student’s self-
model eventually succeeds in imitating the teacher’s actions, then
it concludes that the observed agent is an appropriate teacher;
otherwise, it concludes that the agent is an inappropriate teacher.
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Fig. 5. Imitation of a teacher: (a)–(c) Self model’s attempt to imitate the appropriate teacher’s action by using the randomly initialized neural controller. (d)–(f) Its imitation
attempt by using the neural controller evolved at the middle of the simulation run. (g)–(i) The self model succeeds in evolving the neural controller that allows itself to
closely imitate the appropriate teacher. (j)–(r) Self model’s unsuccessful attempt to imitate the inappropriate teacher’s action at the beginning, middle, and end of the neural
controller evolution.
3.4.1. Neural controller
The student uses a simple 3×2 single layer neural network (see

Fig. 1(j)) to control the actions of its self model. The roll histories
(roll is defined here as the rotation about an axis that is parallel
with the student’s line of sight; roll history of an object refers
to the changes in its roll over the modeling process) of the three
objects that constitute the evolved visual model of the observed
teacher are fed to the three inputs of the neural network. Each roll
history is sub-sampled at every 100 intervals to obtain an input
length of 240. (The total length of each parameter history in the
recordedmodel parameter set can be computed as 8(Nest)×1000×

3 = 24 000.) The two outputs of the neural network are used to
actuate the two rotary joints of the self model evolved in the first
phase; the outputs are passed through an exponential activation
function and linearly scaled to generate angle commands in the
range [−90°, 90°].

3.4.2. Optimizing the neural controller
The student robot faces two challenges when attempting to

imitate a candidate teacher: its body parts must rotate in the
same manner as the candidate teacher, but it is not sure which
of the teacher’s body parts correspond to its own body parts. The
following approach resolves both of these issues.

An initial random neural network is created using a randomly-
generated parameter vector {w11, w12, w13, w21, w22, w23} which
encodes each weight in the network. Each weight is randomly
initializedwith a value between−1 and 1. First, the best selfmodel
from the first phase is created in the simulator. Second, for each
time step t , the neural network is provided at its input layer with
the roll triplet (ω

(t)
1 , ω

(t)
2 , ω

(t)
3 ), where ω

(t)
i indicates the roll of the

teacher’s ith body part recorded at tth position in the teacher’s
roll history. Third, the values are propagated from the input to the
output layer. Fourth, the two output values are fed to the joints
of the student’s self model. Fifth, the resulting roll response of the
three body parts of the self model (Ω1(t), Ω2(t), Ω3(t)) at this tth
time step of the simulation are recorded. Finally, after 240 time
steps of simulation, the quality of the neural network is computed.

The error of the neural network is evaluated based on how
well the self model’s movements approximate that of the teacher’s
visual model. In particular, the error is computed as the error
between the roll of each body part of the self model and that of
its corresponding object in the teacher’s visual model. This object
correspondence is first resolved in order to decidewhich body part
of the selfmodel should bematchedwithwhich object of the visual
model.

For this purpose, the self model is aligned such that the main
body is placed to the extreme left of its visual field and body part
lb is placed to the extreme right. Now, the Euclidean distances be-
tween the normalized positions of the body parts of the self model
and the normalized positions of the three objects from the teacher
simulation are computed in order to determine the object corre-
spondences based on their proximity to each other. Let (ν1, ν2, ν3)
be the new roll triplet of the teacher’s visual model after reorder-
ing. For example, if the computed object order is (2, 1, 3), then
(ν1 = ω2, ν2 = ω1, ν3 = ω3). Now, the error of a neural network
k is given by:

ek =

 240−
i=1

(ν i
1 − Ω i

1)
2 + (ν i

2 − Ω i
2)

2 + (ν i
3 − Ω i

3)
2. (5)

A hill climber is used to optimize the weights of the neural net-
work using ek as an objective function. At each iteration, the set
of weights is subjected to randommutation and then evaluated as
described above. If the new neural network achieves a lower er-
ror than the parent network, the parent is replaced with the child;
otherwise, the child is discarded.Mutation is achievedby randomly
selecting one to three weights and perturbing their values using a
Gaussian distribution. Optimization is terminated after 500 itera-
tions.

Fig. 5 reports results from a typical attempt by the student
robot to imitate both the appropriate and inappropriate teachers.
Fig. 5(a)–(c) shows the self model’s attempt to imitate the appro-
priate teacher’s action using the initial, randomly-initialized neu-
ral controller. Note here that the self model is unable to replicate
the teacher’s actions. However, Fig. 5(d)–(f), which reports the self
model’s actions after 250 iterations, and Fig. 5(g)–(i), which reports
the self model’s actions after 500 iterations, indicate that the self
model quickly learns to closely imitate the movements of the ob-
served teacher.

Fig. 5(j)–(r) shows the self model’s response when attempting
to imitate a inappropriate teacher. Note that the self model fails to
find a neural controller that allows itself to imitate this candidate
teacher.
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Fig. 6. Objective error of evolved self models of the student averaged over 30 independent trials. (The standard error of the mean graphs are shown above as dotted curves.)
The self models at the beginning (t = 0), middle (t = 25), and end (t = 50) of a sample evolution are shown above for illustration purpose.
a b

Fig. 7. Objective error of evolved teacher models averaged over 30 independent trials: (a) The appropriate teacher. (b) The inappropriate teacher. (The standard error of
the mean graphs are shown above as dotted curves. The visual models at the beginning, and at the end of each pass of a sample evolution are shown above for illustration
purposes.)
4. Results

In the previous section we have used results from a single
typical experiment to demonstrate how each of the three phases
– self-discovery (Fig. 3), teacher modeling (Fig. 4), and teacher
imitation (Fig. 5) – to together enable a student robot to distinguish
between appropriate and inappropriate teachers. We conducted
thirty independent trials of each of the three phases in order to
evaluate the statistical consistency of our method.

Fig. 6 shows the objective error of evolved self models of the
student averaged over 30 independent trials. We define objective
error as the actual errors inherent in the self model compared to
the physical robot, and distinguish it from subjective error, which
is the error inferred by the student robot given the sensor data
made available to it (Eq. (1)). The standard errors of the mean
(SEM) graphs are shown as dotted curves. The self models at the
beginning (t = 0), middle (t = 25), and end (t = 50) of a sample
run, shown in the figure, illustrate the reduction in objective
error: that is, how well the morphologies of the self models
starts to approximate the morphology of the physical student.
The statistically significant difference between the mean objective
error at the beginning (t = 0) and the termination (t = 50)
of the self-modeling phase indicates that the student robot is
consistently able to create a simulation of its own body.

Fig. 7(a) and (b) report the objective error of the models of the
appropriate teacher and the inappropriate teacher, respectively,
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Fig. 8. Objective error of evolved neural controllers for the appropriate teacher and the inappropriate teacher averaged over 30 independent trials. (The standard error of
the mean graphs are shown above as dotted curves.) The self model’s imitation attempt at the beginning and the end of a sample neural controller evolution are shown
above for both the teachers.
Fig. 9. (a)–(c) Input to the teacher modeling module: Stereo image pairs extracted from the left and right videos of the appropriate teacher’s act of forward locomotion.
(d)–(l) The physical student uses the neural controller (evolved in the third phase) to move, resulting in the successful imitation of the appropriate teacher.
averaged over 30 independent trials. Several teacher models
obtained at different points during the optimization process are
added for comparison purposes. Again, the significant difference
between the mean objective error of the teacher models at the
outset and at the termination of this phase, for both candidate
teachers, indicates that the student robot consistently converges
on an approximate model of the candidate teacher.

Fig. 8 indicates the mean objective errors of optimized neural
controllers for the appropriate teacher and the inappropriate
teacher, averaged over 30 independent trials. The self model’s
imitation attempt at the beginning and the end of a sample neural
controller evolution are shown for both the teachers. Note that the
mean objective error corresponding to the inappropriate teacher
is almost flat and there is no statistically significant difference
between the initial and finalmean objective errors. However, there
is a significant difference in the case of the appropriate teacher.
This demonstrates that the student is consistent in distinguishing
the appropriate teacher from the inappropriate one.
Finally, if the student robot is able to significantly reduce the
error of a neural network, it may elect to execute that controller
using its physical, rather than modeled self. In many cases, this
results in imitation of the appropriate teacher. Snapshots from the
video footage of a sample experiment in which the student learns
to imitate the forward locomotion of the appropriate teacher are
shown in Fig. 9(d)–(l).

5. Discussion

We have here demonstrated that a simple physical robot
can consistently model itself and other candidate teachers in its
environment. It can use these self and other models to determine
whether a candidate teacher is an appropriate teacher: that is,
whether the student can imitate the actions of the teacher. This
was demonstrated using a two degree-of-freedom student robot,
an appropriate teacher with the same number of DOFs and body
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topology, and an inappropriate teacher with the same DOFs but a
different body topology.

This approach was designed such that teachers may be deemed
appropriate or not even if their visual appearance differs from that
of the student robot. For instance the student robot would still be
able to imitate teachers of different size and at different distances
from itself, as well as different positions in its field of view, because
change in the interrelations of the teacher’s body parts are used for
imitation, rather than absolute geometric properties.

This ability to see beyond the immediate geometric similarities
between the self and another opens the possibility for inference
of behavior implied by abstract motion by a teacher, such as hand
gestures: walking two fingers across a surface could indicate a
signal by a teacher to a student to perform bipedal walking. Prior
work on gesture imitation (e.g., waving a hand) has shown that
limitations on the perception and the execution in a robotic set-
up have a profound influence on the number and type of gestures
that can be used to socially train robots (Jansen, 2003). However,
the teacher modeling phase demonstrated here could be extended
to inferring behavior from hand or arm gestures. This has practical
applications as a way of ‘teaching’ a robot by a human user quickly.

Although both the student and teacher robots had simple
morphologies in this work, the proposed framework could
be scaled up to robots having more complex morphologies.
Indeed it was demonstrated by Bongard et al. (2006) that an
estimation–exploration algorithm could be employed by an eight
DOF articulated robot to self model itself and use these models
to recover from body damage. The method demonstrated here
could be extended in still other ways. In the teacher modeling
phase, the error of a model was taken to be the difference between
individual pixels in images taken by the physical student robot of
the physical teacher robot, and by virtual cameras in the teacher
models. However, other kinds of visual primitives like bounded
pixel patches and texture patches could also be used, to make
the recognition and modeling of more complex physical objects
possible. Furthermore, in the current work only cuboids, spheres,
and capped cylinders were used as the basic elements. However,
compound objects that are successfully modeled could be added
to this basic set of objects so that the algorithm could look for such
templates in more complex scenes.

Inferring not just the roll of the teacher’s body parts around
the student robot’s line of sight, but other rotations of the teacher,
as well as other changes over time such as its motion, and
motion in response to the student, could be incorporated into
the modeling process. This latter property of a teacher could
provide a social contingency cue to the student: in otherwords, the
student could begin to model under what conditions the teacher
responds to the student’s actions. Finally, the simplest possible
stochastic optimizers – hill climbers –were employed in thiswork;
these could be replaced in future work with more sophisticated
optimization methods to speed up modeling and imitation.

6. Conclusions

Solutions to the problem of who the robot should learn from
are crucial to the progress of social robotics: a student’s ability
to learn a new skill from a teacher is affected by how well, or
how closely, the student can imitate the teacher’s action. We
have here proposed and demonstrated a framework that provides
one solution to this problem. Specifically, we have shown how a
robot can use self-discovery as a means of recognizing self-other
equivalences with other robots in order to identify appropriate
teachers and avoid wasting time attempting to learn from any
inappropriate teachers in its surroundings. Our approach has been
tested using real robot experiments in which a physical student
robot, not preprogrammed to locomote, observed a teacher
locomoting, and learned to move in the same way using the
proposed framework.
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