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11.1 Introduction 

Humans are often characterized as the most behaviourally flexible of all animals. 
Evolution has stumbled upon an unlikely but very effective trick for achieving this 
state. Relative to most other animals, we are born 'immature' and helpless. Our 
extended period of infantile immaturity, however, confers us with benefits. It allows 
us to learn and adapt to the specific physical and cultural environment into which we 
are born. Instead of relying on fixed reflexes adapted for specific environments, our 
learning capacities allow us to adapt to a wide range of ecological niches, from 
Alaska to Mica, modifying our shelter, skills, dress and customs accordingly. A 
crucial component of evolution's design for human beings is imitative learning, the 
ability to learn behaviours by observing the actions of others.  
  Human adults effortlessly learn new behaviours from watching others. Parents 
provide their young with an apprenticeship in how to behave as a member of the 
culture long before verbal instruction is possible. In Western culture, toddlers hold 
telephones to their ears and babble into thin air. There is no innate proclivity to treat 
hunks of plastic in this manner, nor is it due to trial-and-error learning. Imitation is 
chiefly responsible.  

Over the past decade, imitative learning has received considerable attention from 
cognitive scientists, evolutionary biologists, neuroscientists and robotics researchers. 
Discoveries in developmental psychology have altered theories about the origins of 
imitation and its place in human nature. We used to think that humans gradually 
learned to imitate over the first several years of life. We now know that newborns 
can imitate body movements at birth (Meltzoff and Moore, 1983, 1997). Such 
imitation  reveals an innate link between observed and executed acts, with  important  
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implications for neuroscience. Evolutionary biologists are using imitation in humans 
and non-human animals as a tool for examining continuities and discontinuities in 
the evolution of mind.  

Darwin inquired about imitation in non-human animals, but the last 10 years 
have seen a greater number of controlled studies of imitation in monkeys and great 
apes than in the previous 100 years. The results indicate that monkey imitation is 
hard to come by in controlled experiments, belying the common wisdom of 'monkey 
see monkey do' (Tomasello and Call, 1997; Visalberghi and Fragaszy, 2002; Whiten, 
2002). Non-human primates and other animals (e.g. songbirds) imitate, but their 
imitative prowess is more restricted than that of humans (Meltzoff, 1996). 
Meanwhile, neuroscientists and experimental psychologists have started 
investigating the neural and psychological mechanisms underlying imitation, 
including the exploration of 'mirror neurons' and 'shared neural representations' (e.g. 
Decety, 2002; Prinz, 2002; Rizzolatti et al., 2002; Meltzoff and Decety, 2003; 
Jackson et al., 2006).  

The robotics community is becoming increasingly interested in robots that can 
learn by observing movements of a human or another robot. Such an approach, also 
called 'learning by watching' or 'learning by example', promises to revolutionize the 
way we interact with robots by offering a new, extremely flexible, fast and easy way 
of programming robots (Berthouze and Kuniyoshi, 1998; Mataric and Pomplun, 
1998; Billard and Dautenhahn, 1999; Breazeal and Scassellati, 2002; Dautenhahn 
and Nehaniv, 2002; see also Robotics and Autonomous Systems (special issue), 
2004). This effort is also prompting an increased cross-fertilization between the 
fields of robotics and human psychology (Demiris et al., 1997; Schaal, 1999; 
Demiris and Meltzoff, in press).  

In this chapter, we set the stage for re-examining robotic learning by discussing 
Meltzoff and Moore's theory about how infants learn through imitation (Meltzoff, 
2005, 2006; Meltzoff and Moore, 1997). They suggest a four-stage progression of 
imitative abilities: (1) body babbling, (2) imitation of body movements, (3) imitation 
of actions on objects and (4) imitation based on inferring intentions of others. We 
formalize these four stages within a probabilistic framework that is inspired by 
recent ideas from machine learning and statistical inference. In particular, we suggest 
a Bayesian approach to the problem of learning actions through observation and 
imitation, and explore its connections to recently pro- posed ideas regarding the 
importance of internal models in sensorimotor control. We conclude by discussing 
two main advantages of a probabilistic approach: (1) the development of robust 
algorithms  for  robotic  imitation  learning  in  noisy and uncertain environments and  
(2)  the  potential  for  applying  Bayesian  methodologies  (such  as  manipulation of   
prior   probabilities)   and   robotic  technologies  to  obtain  a  deeper  understanding  
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of imitative learning in human beings. Some of the ideas presented in this chapter 
appeared in a preliminary form in Rao and Meltzoff (2003).  
 
11.2 Imitative learning in human infants  
 
Experimental results obtained by one of the authors (Meltzoff) and his colleagues 
over the past two decades suggest a progression of imitative learning abilities in 
infants, building up from 'body babbling' (random experimentation with body 
movements) in neonates to sophisticated forms of imitation in 18-month-old infants 
based on inferring the demonstrator's intended goals. We discuss these results below.  
 
 
11.2.1 Body babbling  

 
An important precursor to the ability to learn via imitation is to learn how specific 
muscle movements achieve various elementary body configurations. This helps the 
child learn a set of 'motor primitives' that could be used as a basis for imitation 
learning. Experiments suggest that infants do not innately know what muscle 
movements achieve a particular goal state, such as tongue protrusion, mouth opening 
or lip protrusion. It is posited that such movements are learned through an early 
experiential process involving random trial-and-error learning. Meltzoff and Moore 
(1997) call this process 'body babbling'.  

In body babbling, infants move their limbs and facial parts in repetitive body 
play analogous to vocal babbling. In the more familiar notion of vocal babbling, the 
muscle movements are mapped to the resulting auditory consequence; infants are 
learning an articulatory-auditory relation (Kuhl and Meltzoff, 1996). Body babbling 
works in the same way, a principal difference being that the process can begin in 
utero. What is acquired through body babbling is a mapping between movements and 
a resulting body part configuration such as: tongue-to-lips, tongue-between-lips, 
tongue-beyond-lips. Because both the dynamic patterns of movement and the 
resulting endstates achieved can be monitored proprioceptively, body babbling can 
build up a 'directory' (an 'internal model') mapping movements to goal states 
(Meltzoff and Moore, 1997). Studies of fetal and neonatal behaviour have 
documented self-generated activity that could serve this hypothesized body babbling 
function (Patrick et al., 1982). Neonates can acquire a rich store of information 
through such body babbling. With sufficient practice, they can map out an 'act space' 
enabling new body configurations to be interpolated within this space. Such an 
interpretation is consistent with the probabilistic notion of forward models and 
internal models discussed in Section 11.3.1.  
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Figure 11.1 Imitative responses in 2- to 3-week-old infants (from  
Meltzoff and Moore, 1977).
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11.2.2  Imitating body movements 
 
In addition to body babbling, infants have been shown to demonstrate imitative
learning. Meltzoff and Moore (1983, 1989) discovered that newborns can imitate 
facial acts. The mean age of these infants was 36 hours old, the youngest being 42 
minutes old at the time of testing. Facial imitation in human infants thus suggests an 
innate mapping between observation and execution. Moreover, the studies provide
information about the nature of the machinery infants use to connect observation 
and execution, as will be illustrated in the following brief review. 

In  Meltzoff  and  Moore (1977), 12- to 21-day-olds  were  shown to  imitate 
four different gestures, including facial and manual movements. Infants didn't 
confuse either actions or body parts. They differentially responded to tongue 
protrusion with lip protrusion and without lip protrusion (Figure 11.1), showing that 
the specific body part can he identified. They also differentially responded to lip 
protrusion versus lip opening, showing that differential action patterns can be 
imitated with the same body part. This is confirmed by research showing that infants 
differentially  imitate  two  different  kinds  of movements with the tongue (Meltzoff
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and Moore, 1994, 1997). In all, there are more than 24 studies of early imitation from 
13 independent laboratories, establishing imitation for an impressive set of 
elementary body acts (for a review, see Meltzoff, 2005). This does not deny further 
development of imitative abilities. Young infants are not as capable as older children 
in terms of motor skills and the neonate is certainly less self-conscious about 
imitating than the toddler (Meltzoff and Moore, 1997). The chief question for theory, 
however, concerns the neural and psychological processes linking the observation 
and execution of matching acts. How do infants crack the correspondence problem:' 
how can observed body states of a teacher be converted to 'my own body states'? 
Two discoveries bear on this issue.  

First, early imitation is not restricted to direct perceptual-motor resonances. 
Meltzoff and Moore (1977) put a pacifier in infants' mouths so they couldn't imitate 
during the demonstration. After the demonstration was complete, the pacifier was 
withdrawn, and the adult assumed a passive face. The results showed that infants 
imitated during the subsequent 2.5-minute response period while looking at a passive 
face. More dramatically, 6-week-olds have been shown to perform deferred imitation 
across a 24-hour delay (Meltzoff and Moore, 1994). Infants saw a gesture on one day 
and returned the next day to see the adult with a passive-face pose. Infants stared at 
the face and then imitated from long-term memory.  

Second, infants correct their imitative response (Meltzoff and Moore, 1994, 
1997). They converge on the accurate match without feedback from the 
experimenter. The infant's first response to seeing a facial gesture is activation of the 
corresponding body part. For example, when infants see tongue protrusion, there is a 
dampening of movements of other body parts and a stimulation of the tongue. They 
do not necessarily protrude the tongue at first, but may elevate it or move it slightly 
in the oral cavity. The important point is that the tongue, rather than the lips or 
fingers, is energized before the precise imitative movement pattern is isolated. It is as 
if young infants isolate what part of their body to move before how to move it. 
Meltzoff and Moore (1997) call this 'organ identification'. Neurophysiological data 
show that visual displays of parts of the face and hands activate specific brain sites in 
monkeys and humans (Buccino et al., 2001; Gross, 1992). Specific body parts could 
be neurally represented at birth and serve as a foundation for infant imitation.  

In   summary,  the  results  suggest   that:  (1) newborns  imitate  facial  acts    
that  they  have  never  seen  themselves  perform, (2)  there  is an innate 
observation-execution  pathway  in  humans  and   (3)  this  pathway  is  mediated  by 

1 For more on the issue of correspondence problems, see Part I,   'Correspondence 
Problem and Mechanisms' of this volume. -Ed.  
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Figure 11.2 A 14-month-old infant imitating the novel action of  
touching a panel with the forehead (from Meltzoff, 1999).  

 
a representational structure that allows infants to defer imitation and to correct their 
responses without any feedback from the experimenter.  
 
 
11.2.3 Imitating actions on objects  
 
More sophisticated forms of imitation than facial or manual imitation can be 
observed in infants who are several months older. In particular, the ability to imitate 
in these infants begins to encompass actions on objects that are external to the 
infant's body parts. In one study, toddlers were shown the act of an adult leaning 
forward and using the forehead to touch a yellow panel (Meltzoff, 1988b). This 
activated a microswitch, and the panel lit up. Infants were not given a chance for 
immediate imitation or even a chance to explore the panel during the demonstration 
session; therefore, learning by reinforcement and shaping was excluded. A one-week 
delay was imposed. At that point, infants returned to the laboratory and the panel 
was put out on the table. The results showed that 67% of the infants imitated the 
head-touch behaviour when they saw the panel. Such novel use of the forehead was 
exhibited by 0 % of the controls who had not seen this act on their first visit. An 
example of the head-touch response is shown in Figure 11.2  

Successful  imitation  in  this  case must be based on observation of the adult's 
act  because  perception  of  the panel  itself  did  not  elicit  the  target  behaviour  in 
the  naive infants. Moreover, the findings tell us something about what is 
represented.   If   the  only  thing   they   remembered  is   that  'the  panel  lit  up’ (an  
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object  property),  they  would  have returned and used their hands to press it. 
Instead,  they  re-enacted  the  same unusual act  as used  by  the adult. The absent 
act  had  to have  been   represented  and  used to generate the behaviour a week 
later. 

The utility of deferred imitation with 'real world' objects has also been 
demonstrated. Researchers have found deferred imitation of peer behaviour. In one 
study, 16-month-olds at a day-care centre watched peers play with toys in unique 
ways. The next day, an adult went to the infants' house (thereby introducing a change 
of context) and put the toys on the floor. The results showed that infants played with 
the toys in the particular ways that they had seen peers play 24 hours earlier (Hanna 
and Meltzoff, 1993). In another study, 14-month-olds saw a person on television 
demonstrate target acts toys (Figure 1 1.3). When they returned to the laboratory the 
next day, they were handed the toys for the first time. Infants re-enacted the events 
they saw on TV the previous day (Meltzoff, 1988a). 

Taken  together, these  results  indicate  that  infants  who are between 1 and 1.5 
years  old  are adept at imitating not only body movements but also actions on 
objects in a variety of contexts. For imitation to be useful in cultural learning, it 
would have to function with just such flexibility. The ability to imitate the actions of 
others on external objects undoubtedly played a crucial role in human evolution by 
facilitating the transfer of knowledge of tool use and other important skills from one 
generation to the next. 
 
 
1 1.2.4 Inferring intentions 
 
A  sophisticated  form  of  imitative  learning  is  that  requiring  an  ability  to read 
below  the  perceived  behaviour  to  infer  the  underlying  goals  and  intentions  of 
the  actor.   This  brings  the  human  infant  to  the  threshold  of  'theory of mind',  in 
which  they  not  only  attribute  visible  behaviours  to  others,  but  develop the idea 
that  others  have  internal  mental  states (intentions,  perceptions,  emotions)  that 
underlie,  predict  and  generate  these  visible  behaviours. 

One   study  involved  showing  18-month-old  infants  an  unsuccessful  act 
(Meltzoff,  1995).  For  example,  an  adult  actor  'accidentally'  under-  or overshot 
his  target,  or  he  tried  to  perform  a  behaviour  but  his  hand  slipped  several 
times;  thus  the  goal-state  was  not  achieved  (Figure  1 1.4,  top row). To  an 
adult,  it   was   easy  to  read  the  actor's  intention  although  he  did   not   fulfill it. 
The  experimental  question  was  whether  infants  also  read  through the literal 
body   movements   to   the   underlying   goal   of   the  act.   The   measure of   how 
they   interpreted   the   event   was   what   they   chose   to   re-enact.   In   this   case 
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Figure 11.3  Infants as young as 14-months-old can imitate actions on objects as 
seen on TV (from Meltzoff, 1988a). Experiments have shown infants can also 
perform deferred imitation based on actions observed on TV the previous day 
(Meltzoff, 1988a). 

 
 
the   correct   answer    was   not    to   imitate   the  movement  that  was  actually 
seen,  but  the  actor's  goal,  which  remained  unfulfilled. 

The   study   compared   infants'   tendency   to   perform  the  target act in several 
situations:  (1)  after  they  saw  the  full  target  act  demonstrated, (2)  after they saw  
the  unsuccessful  attempt  to  perform  the  act,  and   after it was neither shown nor 
attempted. The results showed that 18-month-olds can infer the unseen goals implied 
by unsuccessful attempts. Infants who saw the unsuccessful attempt and infants who 
saw the full target act both produced target acts at a significantly higher rate than 
controls. Evidently, toddlers can understand our  goals even  if we fail to fulfill them. 
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Figure 11.4 Human actor demonstrating an unsuccessful act (top panel) and an 
inanimate device mimicking the same movements (bottom). Infants attributed goals 
and intentions to the human but not to the inanimate device (from Meltzoff, 1995). 
                      
 If infants can pick up the underlying goal or intention of the human act, they 
should be able to achieve the act using a variety of means. This was tested by 
Meltzoff (2006) in a study of 18-month-olds using a dumbbell-shaped object that 
was too big for the infants' hands. The adult grasped the ends of the dumbbell and 
attempted to yank it apart, but his hands slid off so he was unsuccessful in carrying 
out his intention. The dumbbell was then presented to the child. Interestingly, infants 
did not attempt to imitate the surface behaviour of the adult. Instead, they used novel 
ways to struggle to get the gigantic toy apart. They might put one end of the 
dumbbell between their knees and use both hands to pull it upwards, or put their 
hands on inside faces of the cubes and push outwards, and so on. They used different 
means than the demonstrator in order to achieve the same end. This fits with 
Meltzoff's (1995) hypothesis that infants had inferred the goal of the act, 
differentiating it from the surface behaviour that was observed.     
 People's acts can be goal-directed and intentional but the motions of inanimate 
devices are not -they are typically understood within the framework of physics, not 
psychology. In order to begin to assess whether young children distinguish between a 
psychological vs. purely physical framework, Meltzoff (1995) designed an inanimate 
device made of plastic, metal and wood. The device had poles for arms and  
mechanical pinchers for hands. It did not look human, but it traced the same spatio- 
temporal path that the human actor traced and manipulated the object much as the 
human actor did (see Figure 11.4). The results showed that infants did not attribute a 
goal or intention to the movements of the inanimate device. Infants were no more (or 
less) likely to pull the toy apart after seeing the unsuccessful attempt of the inanimate 
device as in the baseline condition. This was the case despite the fact that infants 
pulled the dumbbell apart if the inanimate device successfully completed this act.  
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Evidently, infants can  pick  up certain  information  from  the inanimate  device, but 
not  other  information: they can understand successes, but not failures. In the case of 
the unsuccessful attempts, it is as if they see the motions of the machine's mechanical 
arms as 'physical slippage' but not as an 'effort' or 'intention' to pull the object apart. 
They appear to make attributions of intentionality to humans but not to this 
mechanical device. One goal of our current research program is to examine just how 
'human' a model must look (and act) in order to evoke this attribution. We plan to 
test infants' interpretations of the 'intentional' acts of robots. 
 
 
11.3  A probabilistic model of imitation 
 
In   recent  years,  probabilistic  models  have  provided  elegant  explanations for  a 
variety of neurobiological  phenomena and perceptual illusions (for reviews, see 
Knill and Richards, 1996;  Rao et al., 2002).  There is growing evidence that the 
brain utilizes principles such as probability matching and Bayes theorem for solving 
a wide range of tasks in sensory processing, sensorimotor control and decision-
making. Bayes theorem in particular has been shown to be especially useful in 
explaining how the brain combines prior knowledge about a task with current 
sensory information and how information from different sensory channels is 
combined based on the noise statistics in these channels (see chapters in Rao et al., 
2002). 

At  the  same time,  probabilistic approaches  are  becoming increasingly popular 
in robotics and in artificial intelligence (AI). Traditional approaches to AI and 
robotics have been unsuccessful in scaling to noisy and realistic environments due to 
their inability to store, process and reason about uncertainties in the real world. The 
stochastic nature of most real-world environments makes the ability to handle 
uncertainties almost indispensable in intelligent autonomous systems. This 
realization has sparked a tremendous surge of interest in probabilistic methods for 
inference and learning in AI and robotics in recent years. Powerful new tools known 
as graphical models and Bayesian networks (Pearl, 1988; Jensen, 2001; Glymour, 
2001) have found wide applicability in areas ranging from data mining and computer 
vision to bioinformatics, psychology and mobile robotics. These networks allow the 
probabilities of various events and outcomes to be inferred directly from input data 
based on the laws of probability and a representation based on graphs. 

Given  the recent success of probabilistic methods in AI/robotics and in 
modelling the brain,  we  believe  that  a  probabilistic  framework for imitation 
could  not  only  enhance  our  understanding of  human  imitation  but  also provide 
new   methods   for  imitative   learning  in  robots.  In   this  section,  we   explore   a 
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formalization of Meltzoff and Moore's stages of imitative learning in infants within 
the context of a probabilistic model.  

 
11.3.1 Body babbling: learning internal models of one's own body  

Meltzoff and Moore's theory about body babbling can be related to the task of 
learning an 'internal model' of an external physical system (also known as 'system 
identification' in the engineering literature). The physical system could be the infant's 
own body, a passive physical object such as a book or toy, or an active agent such as 
an animal or another human. In each of  these cases, the underlying goal is to learn a 
model of the behaviour of the system being observed, i.e. to model the 'physics' of 
the system. Certain aspects of the internal model, such as the structure of the model 
and representation of specific body parts (such as the tongue), could be innately 
encoded and refined prior to birth (see Section 11.2.2) but the attainment of fine-
grained control of movements most likely requires body babbling and interactions 
with the environment after birth.  

A prominent type of internal model is a forward model, which maps actions to 
consequences of actions. For example, a forward model can be used to predict the 
next state(s) of an observed system, given its current state and an action to be 
executed on the system. Thus, if the physical system being modelled is one's own 
arm, the forward model could be used to predict the sensory (visual, tactile and 
proprioceptive) consequences of a motor command that moves the arm in a 
particular direction.  

The counterpart of a forward model is an inverse model, which maps desired 
perceptual states to appropriate actions that achieve those states, given the current 
state. The inverse model is typically harder to estimate and is often ill-defined, due to 
many possible actions leading to the same goal state. A more tractable approach, 
which has received much attention in recent years (Jordan and Rumelhart, 1992; 
Wolpert and Kawato, 1998), is to estimate the inverse model using a forward model 
and appropriate constraints on actions (priors), as discussed below.  

Our hypothesis is that the progression of imitative stages in infants as discussed 
in Section 11.2 reflects a concomitant increase in the sophistication of internal 
models in infants as they grow older. Intra-uterine and early post-natal body babbling 
could allow an infant to learn an internal model of its own body parts. This internal 
model  facilitates  elementary  forms  of  imitation  in Stage 2 involving movement 
of  body  parts  such  as  tongue  or  lip  protrusion.  Experience with real-world 
objects after birth allows internal models of the physics of objects to be learned, 
allowing imitation of  actions  on  such objects as seen in Stage 3.  By the time 
infants   are   about   1.5  years  old,   they  have  interacted   extensively   with  other  
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humans, allowing them to acquire internal models (both forward and inverse) of 
active agents with intentions (Meltzoff, 2006). Such learned forward models could 
be used to infer the possible goals of agents despite witnessing only unsuccessful 
demonstrations while the inverse models could be used to select the motor 
commands necessary to achieve the undemonstrated but inferred goals. These ideas 
are illustrated with a concrete example in a subsequent section. 

 
11.3.2 Bayesian imitative learning  

Consider an imitation learning task where the observations can be characterized as a 
sequence of discrete states s1, s2,. . . , sN of an observed object.2  A first problem that 
the imitator has to solve is to estimate these states from the raw perceptual inputs I1, 
I2,. . . , IN. This can be handled using state estimation techniques such as the forward-
backward algorithm for hidden Markov models (Rabiner and Juang, 1986) and belief 
propagation for arbitrary graphical models (Pearl, 1988; Jensen, 2001). These 
algorithms assume an underlying generative model that specifies how specific states 
are related to the observed inputs and other states through conditional probability 
matrices. We refer the interested reader to Jensen (2001) for more details. We 
assume the estimated states inferred from the observed input sequence are in object-
centred coordinates.                 
 The next problem that the imitator has to solve is the mechanism problem 
(Meltzoff and Moore, 1983, 1997) or correspondence problem (Nehaniv and 
Dautenhahn, 1998; Alissandrakis et al., 2002; Nehaniv and Dautenhahn, 2002): how 
can the observed states be converted to 'my own body states' or states of an object 
from 'my own viewpoint'? Solving the correspondence problem involves mapping 
the estimated object-centred representation to an egocentric representation. In this 
chapter, for simplicity, we use an identity mapping for this correspondence function 
but the methods below also apply to the case of non-trivial correspondences (e.g. 
Nehaniv and Dautenhahn, 2001; Alissandrakis et al., 2002a).       
 In the simplest form of imitation-based learning, the goal is to compute a set of 
actions that will lead to the goal state sN, given a set of observed and remembered 
states sl, s2, . . . , sN We will treat st, as the random variable for the state at time t. For 
the rest of the chapter, we assume discrete state and action spaces. Thus, the state st, 
of the observed object could be one of M different values S1, S2, . . . , SM while the 
current action at, could be one of A1, A2, . . . , Ap.  

2  We  have chosen to focus here  on  discrete state  spaces  but  Bayesian techniques can also 
be applied to inference and learning in continuous state spaces (e.g Bryson and Ho, 1975).  
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Consider  now  a simple  imitation  learning  task   where  the  imitator  has observed  
and   remembered   a   sequence  of states  (for  example,  S7 → S1 → ...→ S12).  
These  states   can   also   be   regarded   as   the   sequence   of   sub-goals   that  
need   to  be  achieved  in  order  to reach  the  goal state  S12.  The  objective then  is  
to pick  the  action  at  that  will  maximize  the probability  of  taking  us from  a  
current  state  st = Si  to  a  remembered  next  state  st+1 = Sj,  given  that the  goal  
state  g = Sk  (starting  from  So  = S7 for  our  example).  In  other  words, we  would  
like  to  select  the  action  at that maximizes:  
 

P(at = Ai | st = Si,  St+l = Sj,  g = Sk)                (11.1) 
 
This set of probabilities constitutes the inverse model of the observed system: it tells 
us what action to choose, given the current state, the desired next state and the 
desired goal state.  

The action selection problem becomes tractable if a forward model has been 
learned through body babbling and through experience with objects and agents in the 
world. The forward model is given by the set of probabilities:  
 

P(st+l = Sj | st = Si, at = Ai)              (11.2) 
 
Note that the forward model is determined by the environment and is therefore 
assumed to be independent of the goal state g, i.e.:  
 

P(s  = S  |  s  = S , a  = Ai, g = S ) t+l j t i t k
                     = P(st+l = Sj |  st = Si, at = Ai)                 (11.3)
  
These probabilities can be learned through experience in a supervised manner 
because values for all three variables become known at time step t + 1. Similarly, a 
set of prior probabilities on actions  
 

P(at = At | st = Si, g = Sk)                    (11.4) 
 
can also be learned through experience with the world, for example, by tracking the 
frequencies of each  action for each current state and goal state.  

Given these two sets of probabilities, it is easy to compute probabilities for the 
inverse model using Bayes' theorem. Given random variables A and B, Bayes' 
theorem states that:  
 
P(B | A) = P(A | B)P(B)/P(A)               (11.5) 
 
 
This equation follows directly from the laws of conditional probability  
 
 
P(B I A)P(A) = P(B, A) = P(A, B) = P(A I B)P(B)            (11.6) 
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Given any system that stores information about variables of interest in terms of 
conditional probabilities, Bayes' theorem provides a way to invert the known 
conditional probabilities P(A | B) to obtain the unknown conditionals P(B | A) (in our 
case, the action probabilities conditioned on states). Our choice for a Bayesian 
approach is motivated by the growing body of evidence from cognitive and 
psychophysical studies suggesting that the brain utilizes Bayesian principles for 
inference and decision-making (Knill and Richards, 1996; Rao et al., 2002; Gopnik 
et at., 2004).  

Applying Bayes' theorem to the forward model and the prior probabilities given 
above, we obtain the inverse model:  
 
 

P(at = Ai | st = Si,  St+l = Sj,  g = Sk)  
       = cP(st+l = Sj | St = Si,  at = Ai)P(at = Ai | st = Si, g = Sk)          ( 11.7)  

 
where  c =  l/P(st+l = Sj | St = Si,  g = Sk) is the normalization constant that can be 
computed by marginalizing over the actions:  
 
 

P(st+l = S j| st = g = Sk)  
         = ∑mP(st+l = Sj | St = Si,  at = Am)  
             x P(at=Am | st = Si , g = Sk)           (11.8)  

 
Thus, at each time step, an action Ai  can either be chosen stochastically according to 
the probability P(at = Ai | st = Si,  st+l = Sj, g = Sk) or deterministically as the one that 
maximizes:  
 
 

P(at = Ai | st = Si,  st+l = Sj, g = Sk)            (11.9)  
 
 
The  former  action  selection  strategy  is  known  as  probability  matching  while 
the latter is known as maximum a posteriori (MAP) selection. In both cases, the 
probabilities  are  computed  based  on  the  current  state,  the  next  sub-goal  state 
and  the  final  goal  state  using  the  learned  forward  model  and  priors  on  actions 
(Eq. 11.7). This  contrasts  with  reinforcement  learning  methods  where  goal  
states  are  associated with  rewards  and  the algorithms  pick  actions  that  
maximize the total expected future reward. Learning the 'value function' that 
estimates  the  total  expected  reward  for  each  state  typically  requires  a  large 
number of trials for exploring the state space. In contrast, the imitation-based 
approach  as  sketched  above  utilizes  the  remembered  sequence  of  sub-goal 
states to guide the action-selection process, thereby significantly reducing the 
number  of  trials  needed  to  achieve  the  goal  state.  The  actual number  of  trials 
depends  on  the  fidelity  of  the  learned  forward  model,  which  can  be  fine-tuned  



A Bayesian model of imitation                231 
 
during  body  babbling  and  'play'  with  objects  as  well  as  during  attempts  to 
imitate the teacher.  

A final observation is that the probabilistic framework introduced above 
involving forward and inverse models can also be used to infer the intent of the 
teacher,  i.e.  to  estimate  the  probability  distribution  over  the  goal  state  g,  
given  a  sequence  of  observed  states  s1,  s2, …, sN  and  a  sequence  of  estimated 
actions  a1,  a2, ...,  a N-1:  
  
 

P(g = Sk |  at = Ai, st = Si,  st+1 = Sj)  
= k1P(st+l = Sj | st = Si,  at = Ai, g = Sk) 
   x P(g = Sk | st = Si, at = Ai)  
= k2P(st+l = Sj | st = Si, at = Ai, g = Sk)  
   x P(at = Ai | st = Si, g = Sk)P(g = Sk | st = Si)  
= k3P(st+l = Sj | st = Si,  at = Ai)P(at = Ai | st = Si, g = Sk) 
   x P(st = Si |g = Sk)P(g = Sk)                     (11.10)  

  
 
where the ki are normalization constants. The above equations were obtained by 
repeatedly applying Bayes' rule. The first probability on the right hand side in Eq. 
(11.10) is the learned forward model and the second is the learned prior over actions. 
The last two probabilities capture the frequency of a state given a goal state and the 
overall probability of the goal state itself. These would need to be learned from 
experience during interactions with the teacher and the environment. It should be 
noted that the derivation of Eq. (11.10) above uses the remembered state st of the 
teacher in lieu of the actual state st (as in Equation 11.7) and is based on the 
assumption that the teacher's forward model is similar to the imitator's model - such 
an assumption may sometimes lead to inaccurate inferences, especially if the forward 
model is not sufficiently well-learned or well-matched with the teacher's, or if the 
observed state estimate itself is not accurate.  
 
 
11.3. 3 Example: learning to solve a maze task through imitation  
 
We  illustrate  the  application  of  the  probabilistic  approach  sketched  above  to 
the  problem  of  navigating  to  specific goal locations within amaze, a classic 
problem in the field of reinforcement learning. However, rather than learning 
through  rewards  delivered  at  the  goal  locations  (as in reinforcement learning), 
we  illustrate  how  an  'agent'  can  learn  to  navigate  to  specific  locations  by 
combining  in  a  Bayesian  manner  a  earned  internal  model  with  observed 
trajectories  from  a  teacher  (see  also  Hayes  and  Demiris,  1994).  To make  the 
task   more    realistic,    we    assume    the    presence  of  noise  in  the  environment     
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leading  to  uncertainty   in  the  execution  of actions.  

 
11.3.3.1   Learning a forward model for the maze task  
 
Figure  11.5(a)  depicts the maze environment  consisting of a 20 x 20 grid of 
squares  partitioned  into  several  rooms and corridors by walls, which are depicted 
as thick black lines. The starting location is indicated by an asterisk (*) and the three 
possible goal locations (Goals 1, 2 and 3) are indicated by circles of different shades. 
The  goal of  the imitator  is to observe the teacher's trajectory from the start location 
to one of the goals and then to select appropriate actions to imitate the teacher.  

The states  st  in  this  example  are the grid locations in the maze. The five 
actions available to the imitator are shown in Figure 11.5(b): North (N), East (E), 
South (S), West (W) or remain in place (X). The noisy  'forward dynamics'  of  the 
environment for each of these actions is shown in Figure 11.5(c) (left panel). The 
figure  depicts  the  probability  of  each  possible  next  state  st+1,  that  could  result 
from  executing  one  of  the five actions in a given location, assuming  that  there are 
no walls surrounding the location. The states st+1, are given relative to the current 
state  i.e.  N,  E,  S,  W,  or  X  relative  to  st.   The  brighter  a  square,  the higher 
the probability (between 0 and 1), with each row summing to 1. Note that the 
execution  of  actions  is  noisy:  when  the imitator executes an action, for example 
at = E,  there  is  a  high  probability  the  imitator will move to the grid location to 
the  east (st+1, = E)  of  the  current  location  but  there is also a non-zero probability 
of  ending  up  in the location west (st+1 = W) of the current location. The 
probabilities  in  Figure  11.5(c)  (left panel)  were  chosen  in  an arbitrary manner; 
in  a  robotic  system,  these  probabilities  would  be determined by the noise 
inherent in the hardware of the robot as well as environmental noise. When 
implementing the model, we assume that the constraints given by the walls are 
enforced by the environment (i.e. it overrides, when necessary, the states predicted 
by the forward model in Figure 11.5(c)). One could alternately define a location-
dependent, global model of forward dynamics but this would result in inordinately 
large numbers of  states  for larger maze  environments  and  would  not  scale well. 
For the current purposes, we focus on the locally defined forward model described 
above that is independent  of  the  agent's  current  state in the maze.     
 We examined the  ability of the imitator to learn the given forward model 
through  'body  babbling' which in this case amounts to 'maze wandering'. The 
imitator  randomly  executes  actions  and  counts  the  frequencies  of  outcomes  
(the  next  states  st+1)  for each executed action. The resulting learned forward 
model,  obtained  by  normalizing   the   frequency  counts  to  yield  probabilities,  is 
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Figure 11.5  Simulated  maze environment and learned forward model. (a) Simulated  maze  
environment.  Thick lines  represent  walls.  Shaded ovals represent goal states. The 
instructor and the observer begin each simulated path through  the  maze  at  location  (1,1),  
marked  by  the  dark  asterisk  in  the  lower left  corner of  the maze. (b) Five  possible  
actions at a  maze  location: agents can move  north (N), south (S), east (E), west (W),  or  
remain  in  place (X). (c) Actual and  learned  probabilistic  forward  models. The matrix on  
the  left represents  the true environmental transition function. The matrix on the right 
represents an estimated environmental transition function learned through interaction with 
the environment. Given a current location, each action a, (rows) indexes a probability 
distribution over next states st+1  (columns).  For the  states,  the  labels  X,  N,  S,  E, ware 
used to denote the current location and locations immediately to the north, south, east, and 
west of the current location respectively. The learned matrix closely approximated  the  true  
transition  matrix.  These matrices assume the agent is not attempting to move  through a  
wall.  
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shown in Figure 11.5(c) (right panel). By comparing the learned model with the 
actual forward model, it is clear that the imitator has succeeded in learning the 
appropriate probabilities P(st+1 | st, at) for each value of at, and st+1 (st is any arbitrary 
location not adjacent to a wall). The 'body babbling' in this simple case, while not 
directly comparable to the multi-stage developmental process seen in infants, still 
serves to illustrate the general concept of learning a forward model through 
experimentation and interactions with the environment.  

 
11.3.3.2  Imitation using the learned forward model and learned priors  
 
Given a learned forward model, the imitator can use Eq. (11.7) to select appropriate 
actions to imitate the teacher and reach the goal state. The learned prior model P(at = 
Ai|st = Si, g = Sk), which is required by Eq. (1 1.7), can be learned through 
experience, for example, during earlier attempts to imitate the teacher or during other 
goal-directed behaviours. The learned prior model provides estimates of how often a 
particular action is executed at a particular state, given a fixed goal state. For the 
maze task, this can be achieved by keeping a count of the number of times each 
action  (N, E, S, W, X)  is executed at each location, given a fixed goal location.  

Figure 11.6(a) shows the learned prior model:  

P(at =Ai | st = Si, g = Sk)           (11.11)  

for  an arbitrary location Si in the maze for four actions Ai = N, S, E, and W when the 
goal state g is the location (1,8) (Goal 2 in Figure 11.5(a)). The probability for a 
given action at any maze location (given Goal 2) is encoded by the brightness of the 
square in that location in the maze- shaped graph for that action in Figure 11.6(a). 
The probability values across all actions (including X) sum to one for each maze 
location.  

It is clear from Figure 11.6(a) that the learned prior distribution over actions 
given the goal location points in the correct direction for the maze locations near the 
explored trajectories. For example, for the maze locations along the bottom-left 
corridor (from (2,5) to (7,5)), the action with the highest probability is E while for 
locations along the middle corridor (from (2,s) to (8,8)), the action with the highest 
probability is W. Similar observations hold for sections of the maze where executing 
N and S will lead the imitator closer to the given goal location. The priors for 
unexplored regions of the maze were set to uniform distributions for these 
simulations (dark regions in Figure 11.6(a)).  

The learned forward model in Figure 1 1.5(c) can be combined with the learned 
prior model in Figure 11.6(a) to obtain a posterior distribution over actions as 
specified    by    Eq.  (11.7).  Figure   11.6(c)   shows  an   example of  the   trajectory 
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Figure  11.6     Learned   priors   and  example  of   successful   imitation: (a)   learned  prior 
distributions P(at | st, sG.) for the four directional actions (north, south, east, and west) for 
Goal 2 (map location (1,s)) in our simulated maze environment. Each location in rbe maze 
indexes a distribution over actions (the brighter the square, the higher  the  probability), so 
that the values across all actions (including X - not shown) sum to one for each maze 
location. (b) Trajectories (dashed lines) demonstrated by the instructor during training. The 
goal location here is Goal 2 depicted  by  the grey circle at map location  (1,8).  Trajectories  
are offset within each map cell for clarity;  in  actuality,  the observer  perceives the map cell 
occupied  by  the  instructor  at  each  time step in the trajectory. So, for example, both  
trajectories start at map cell (1, 1). Time is encoded using  greyscale values, from light grey 
(early in each trajectory) to black (late in each trajectory). (c) Example of  successful  
imitation. The observer's trajectory  during imitation is shown as a solid line  with  greyscale  
values  as  in (b).  Imitation  is  performed  by combining the learned forward  and   prior  
models, as described in the text, to select an  action  at  each  step.   
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Figure 11.7  Inferring the intent of the teacher. (a) Dashed line plots a testing trajectory 
for intent inference. Greyscale values show the progression of time, from light grey 
(early in the trajectory) to black (late in the trajectory). The intended goal of the 
instructor was Goal 1 (the white circle at the top right). (b) Inferred intent, shown as a 
distribution over goal states. Each point in the graph represents the output of the intent 
inference algorithm, averaged over eight individual simulation steps (the final data point 
is an average over five simulation steps). Note that the instructor's desired goal, Goal 1, 
is correctly inferred as the objective for all points on the graph except the first. Potential 
ambiguities at different locations are not obvious in this graph due to averaging and 
unequal priors for the three goals (see text for details).     
             
followed by the imitator after observing the two teacher trajectories shown in 
Figure 11.6(b). Due to the noisy forward model as well as limited training data, 
the imitator needs more steps to reach the goal than does the instructor on either 
of the training trajectories for this goal, typically involving backtracking over a 
previous step or remaining in place. Nevertheless, it eventually achieves the goal 
location as can be seen in Figure 1 1.6(c).      
           
               
11.3.3.3  Inferring the intent of the teacher      
                                         
After training on a set of trajectories for each goal (one to two trajectories per 
goal for  the simple example illustrated here), the imitator can attempt to infer the 
intent of  the  teacher  based on observing some or all of the teacher's actions. 
Figure 11.7(a) depicts an example trajectory of the teacher navigating to the goal 
location in the top right corner of the maze (Goal 1 in Figure 11.5(a)). Based on 
this observed trajectory of 85 total steps, the task of the imitator in this simple 
maze environment is to infer  the probability  distribution  over  the three 
possible goal states given the current state, the next state and  the action executed 
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at the current state. The trajectory in Figure 11.7(a) was not used to train the 
observer; instead, this out-of-sample trajectory was used to test the intent inference 
algorithm described in the text. Note that the desired goal with respect to the prior 
distributions learned during training is ambiguous at many of the states in this 
trajectory.  

The intent  inference  algorithm  provides  an  estimate of  the distribution over 
the instructor's possible goals for each time step in the testing trajectory. The 
evolution of this distribution over time is shown in Figure 11.7(b) for the teacher 
trajectory  in (a). Note  that  the  imitator  in  this  case converges  to  a relatively 
high value  for  Goal 1, leading  to  a  high certainty that  the  teacher  intends to go 
to the goal  location  in the top right corner. Note also that the probabilities for the 
other two goals  remain  non-zero,  suggesting  that  the imitator cannot completely 
rule  out  the possibility that the teacher may in fact be navigating to one of these 
other  goal  locations. In this graph, the probabilities for these other goals are not 
very high even  at  potentially ambiguous locations (such  as  location  (9,9))  
because:  (1)  the  plotted  points  represent  averages over  five simulation steps and 
(2) Eq. (1 1.10) depends on P(g = Sk), the prior probabilities of goals, which in this 
case involved higher values for Goal 1 compared to the other goals. Other choices 
for  the  prior  distribution  of  goals (such as a uniform distribution) can be expected 
to  lead  to  higher degrees of ambiguity about the intended goal at different 
locations. The ability of the imitator to estimate an entire probability distribution 
over goal states allows it to ascribe degrees of confidence to its inference of the 
teacher's intent, thereby allowing richer modes of interaction with the teacher than 
would be possible with purely deterministic  methods  for inferring intent (see Verma  
and  Rao, 2006).  

 
11.3.3.4  Summary  
 
Although the maze task above is decidedly simplistic, it serves as a useful first 
example in understanding  how  the abstract  probabilistic framework proposed in 
this  chapter  can  be  used  to  solve a concrete sensorimotor problem. In  addition, 
the  maze  can  be  regarded as  a simple 2-D  example of the general sensorimotor 
task of  selecting actions that will take an agent from an initial state to a desired goal 
state, where the states are typically high-dimensional variables encoding 
configurations of the body or a physical object rather than a 2-D maze location. 
However,  because  the states are assumed to be completely observable, the maze 
example by itself does not provide an explanation for the results obtained by 
Meltzoff (1995) showing  that  an  infant  is  able  to  infer  intent from an unsuccess-   
ful  human  demonstration   but   not   an   unsuccessful   mechanical   demonstration. 
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Figure 11.8 Robotic platforms for testing Bayesian imitation models. (a) A 
binocular pan-tilt camera platform ('Biclops') from Metrica, Inc. (b) A miniature 
humanoid robot (HOAP-2) from Fujitsu Automation, Japan. Both robotic platforms 
are currently being used to test the Bayesian framework sketched in this chapter.  

 

(Figure 11.4). An explanation for such a phenomenon would require the 
correspondence problem to be addressed as well as a sophisticated forward model of 
finger and hand movements, topics that we intend to address in future modelling 
studies.  

11.3.4 Further applications in robotic learning  

We are currently investigating the applicability of the probabilistic framework 
described above to the problem of programming robots through demonstration of 
actions by human teachers (Demiris et al., 1997; Berthouze and Kuniyoshi, 1998; 
Mataric and Pomplun, 1998; Schaal, 1999; Billard and Dautenhahn, 1999; Breazeal 
and Scassellati, 2002; Dautenhahn and Nehaniv, 2002). Two robotic platforms are 
being used: a binocular robotic head from Metrica, Inc. (Fig 11.8(a)), and a recently 
acquired Fujitsu HOAP-2 humanoid robot (Fig 11.8(b)).  

In the case of the robotic head, we have investigated the use of 'oculomotor 
babbling' (random camera movements) to learn the forward model probabilities 
P(st+1 = Sj | st = Si, at =Ai).  The  states  Si in this case are the feedback from the 
motors ('proprioception') and visual information (for example, positions of object 
features).  The  learned   forward  model  for  the  robotic  head  can  be  used  in  the 
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manner described in Section 11.3.2 to solve head movement  imitation tasks 
(Demiris et al., 1997). In particular, we intend to study the task of robotic gaze 
following. Gaze following is an important component of language acquisition: to 
learn words, a first step is to determine what the speaker is looking at, a problem 
solved by the human infant by about one year of age (Brooks and Meltzoff, 2002, 
2005). We hope to design robots with a similar capability (see Hoffman et al., 2006, 
for progress). 

Other work will focus on more complex imitation tasks using the HOAP-2 
humanoid robot, which has 25 degrees of freedom, including articulated limbs, hands 
and a binocular head (Fig 11.8 (b)). Using the humanoid, we expect to be able to 
rigorously test the strengths and weaknesses of our probabilistic models in the 
context of a battery of tasks modeled after the progressive stages in imitative abilities 
seen in infants (see Section 11.2).  Preliminary  results  can be found in Grimes et al., 
2006. 
 
 
11.3.5  Towards a probabilistic model for imitation in infants 
 
The probabilistic framework sketched above can also be applied to better understand 
the stages of infant imitation learning described by Meltzoff and Moore. For 
example, in the case of facial imitation, the states could encode proprioceptive 
information resulting from facial actions such as tongue protrusion or at a more 
abstract level, 'supramodal' information about facial acts that is not modality-specific 
(visual, tactile, motor, etc.). Observed facial acts would then be transformed to goal 
states through a correspondence function, which has been hypothesized to be innate 
(Meltzoff, 1999). Such an approach is consistent with the proposal of Meltzoff and 
Moore that early facial imitation is based on active intermodal mapping (AIM) 
(Meltzoff and Moore, 1977, 1994, 1997). Figure 11.9 provides a conceptual 
schematic of the AIM hypothesis. The key claim is that imitation is a matching-to-
target process. The active nature of the matching process is captured by the 
proprioceptive feedback loop. The loop allows infants' motor performance to be 
evaluated against the seen target and serves as a basis for correction. One 
implementation of such a match-and-correction process is the Bayesian action 
selection  method  described  above  with both visual and proprioceptive information 
being  converted  to supramodal  states. The selection of  actions  according  to Eq. 
(11.7) followed by subsequent matching of remembered and actual states could 
implement the closed-loop matching process in the AIM model. 

As  a  second  example of the application of  the probabilistic framework, 
consider  imitation  learning  of  actions  of  objects.   In  this  case,  the  states  to  be  



240  Rao et al.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.9 Meltzoff and Moore's AIM model of facial imitation (from Meltzoff 
and Moore, 1997).  

 
encoded are the states of the object ('joined together', 'pulled apart', etc. for the 
dumbbell-shaped object mentioned above). The forward model to be used would 
presumably be one that has been learned from experience with similar objects 
('objects that can be pulled apart'). This, along with the learned priors for various 
actions, would allow appropriate actions to be selected based on the observed 
sequence of object states.  

Finally, consider the case where an infant learns from unsuccessful 
demonstrations by inferring the intention of a human demonstrator. In this case, 
forward models could be put to good use to infer intention. By using a forward 
model  of  a human manipulating an object, the consequences of attempted actions 
by the human demonstrator can be predicted. For example, in the case of the 
dumbbell-shaped object used by Meltzoff (1995), the forward model, presumably 
learned  through  prior  experience  with pulling apart objects, would predict that 
when  a   person  is  applying   forces  at  the  two ends  in opposite directions  (away  



A Bayesian model of imitation                    241 

from the centre), there is a high probability for the state where the object has been 
pulled  apart  into  two  halves.  This  state  could  in  turn be adopted  as  the  desired  
goal  state  and  the  appropriate  action  that  maximizes  the probability of achieving 
this state could be selected in the Bayesian manner described above. On the other 
hand, in the case of an inanimate device demonstrating a failed action (Figure 11.4), 
the infant presumably does not apply its forward model to predict the consequences 
of the attempted action, perhaps because the inanimate device is not deemed to be 
human enough to use the infant's forward model (cf. the 'like me' hypothesis of 
Meltzoff, 2006, 2007). The important question of what type of forward model is 
chosen for predicting outcomes and intentions under specific circumstances remains 
a topic for further study.  

The Bayesian model sketched in this chapter is only a first step towards more 
sophisticated  probabilistic  models of imitation. For example, it does not explain 
why  human  infants are superior in  their imitation  abilities when compared to apes 
and  other animals that could potentially possess many of  the same components of 
the Bayesian model as an infant might possess. Addressing such distinctions between 
imitative abilities will likely require a more in-depth study of the types of internal 
models used by infants and animals, and an examination of their ability to generalize 
to  novel  circumstances  when using  these  internal models  for imitation.  

 
11.4 Prospects for developmental robotics  

Humans  at  birth  do  not  have  the  full  set of  skills  and  behaviours exhibited  by 
adults. Human beings are not 'turn key' systems that function perfectly out of the 
box. There are at least four sources of  behavioural change in human development: 
(1) maturational changes in the sensory, motor and cognitive system, (2) 
reinforcement learning, (3) independent invention and discovery, often called 
'insight' and (4) imitative learning. The first three have been widely celebrated: 
maturation has been studied by neuroscientists; reinforcement learning by Skinner 
(1953)  and  generations  of  learning  theorists;  and  independent  invention and 
solitary  discovery  by  Piaget (1954) and others. The imitative competence of young 
infants  has only recently been discovered, and its enormous impact on human 
development and learning only recently sketched  (e.g. see Meltzoff, 2005, 2006, 
2007).  

Imitative  learning  is  more  flexible  and  responsive  to cultural  norms than 
maturation;  it  is  safer  for  the  child  than  Skinnerian  trial-and-error  learning;  
and  it  is  faster  than  relying  on  Piagetian  solitary  discoveries. These  advantages 
of  imitation  learning  apply  equally  well  to  robots  and  other  autonomous 
agents.  In   particular,  learning  through  imitation  offers  substantial  benefits  over  
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other leading robotic learning methods (such as reinforcement learning) by: (1) 
overcoming  the  need  for  a  huge  number  of learning trials and  (2) avoiding the 
need for risky and dangerous experimentation during learning. 

At  the  same  time,  unlike  supervised  learning  methods, imitative learning 
does not require a human to provide the exact motor signals needed to accomplish 
each task - the robot deduces these based only on observing a human or robotic 
demonstrator.  

In  this  chapter, we discussed some of the main results obtained from studies of 
imitative learning in infants. These results suggest a four-stage progression of 
imitative learning abilities: (1) body babbling, (2) imitation of body movements, (3) 
imitation of actions on objects and (4) imitation based on inferring intentions of 
others. We took a first step towards formalizing these stages within a probabilistic 
framework inspired by recent ideas from machine learning, and provided an example 
demonstrating the application of the framework to the imitation learning problem.  

The probabilistic approach is well-suited to imitation learning in real-world 
robotic environments which are noisy and uncertain. The success of recent 
approaches to robotic navigation and control can be attributed to the use of 
probabilistic techniques such as Kalman filtering and particle filtering for handling 
uncertainty (Blake and Yuille, 1992; Fox et al., 2001). Similarly, techniques based 
on statistical learning form the back-bone of several recent successful computer 
vision systems for tracking and recognizing persons (for example, see Jojic and Frey, 
2001). We are optimistic that a probabilistic approach to robotic imitation learning 
will offer many of the advantages of these preceding systems, including the ability to 
handle missing data, robustness to noise, ability to make predictions based on 
learned models, etc. We are currently testing our ideas on a binocular robotic head 
and a humanoid robot. An important issue we intend to explore is the scalability of 
the proposed approach. The Bayesian model requires both a forward model as well 
as a prior model to be learned. In the case of the maze example, the forward and 
prior models were learned using a relatively small number of trials due to the small 
size of the state space. A more realistic scenario involving, for example, a humanoid 
robot would presumably require a larger number of trials due to the greater degrees 
of freedom available; however, the problem may be alleviated to some extent by 
learning forward and prior models only for the parts of the state space that are 
selectively utilized in imitative sessions (e.g., Grimes et al., 2006). Hierarchical 
state-space models may also help in this regard. We hope to explore the issue of 
scalability in future studies involving the humanoid robot.  

The  probabilistic  approach  also  opens up the possibility of applying Bayesian 
methodologies  such  as  manipulation  of  prior  probabilities  of  task  alternatives  
to obtain  a  deeper  understanding  of  imitation  in  humans.  For  example,  one 
could explore   the  effects  of  biasing  a  human subject  towards  particular  classes   



A Bayesian model of imitation               243  

of actions (e.g. through repetition) under particular sets of conditions, a manipulation 
that would  in  effect  test  the  contributions  of the  prior  model  in Eq. (11.7). One 
could also manipulate the forward model used by subjects with the help of virtual 
reality environments. Such manipulations have yielded  valuable  information  
regarding  the  type  of  priors and internal models that  the  adult  human  brain  uses 
in perception (see chapters in Rao et al., 2002) and  in  motor learning (Wolpert et  
al., 1995).  

We  believe  that  the  application of such methodology  to  imitation  could  shed 
new  light  on  the  problem  of  how  infants  acquire internal models of  the people 
and things they encounter in the world. Conversely, we believe that biologically 
inspired models will help shape the architecture and algorithms used to solve 
imitative learning problems in robots (see Demiris et al., 1997; Schaal, 1999; 
Demiris and Hayes, 2002). For example, Meltzoff and Moore's four stages of 
imitation in infants suggests a hierarchical approach to robotic imitation, starting 
from learning internal models of self motion to more sophisticated models of 
interactions  with  active  behaving  agents.  

Imitation is an especially fruitful domain for interdisciplinary collaboration 
between robotics and developmental science. It is a perceptual-motor activity of 
great adaptive value and a channel for learning that lends itself to computational 
modelling. Additionally, it presents an interesting challenge to robotics and offers an 
extremely versatile and flexible way to program robots. Such interdisciplinary 
collaborations could eventually allow us to investigate interactions between young 
children and robots. Do young children, prior to developing the prejudices and 
philosophies of adults, think that robots have subjective beliefs, desires, emotions 
and intentions? Experiments addressing such questions will not only provide new 
insights into how humans develop a 'theory of other minds', but at the same time, 
will allow us to use unprejudiced humans (children) as judges of robots in a new 
form of the celebrated 'Turing test' for autonomous machines. We therefore look 
forward to rich bi-directional benefits emerging from collaborations between 
developmental science and robotics in the coming years. 
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