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Abstract
A fundamental challenge in robotics today is building robots that can learn new skills by

observing humans and imitating human actions. We propose a new Bayesian approach to

robotic learning by imitation inspired by the developmental hypothesis that children use

self-experience to bootstrap the process of intention recognition and goal-based imitation.

Our approach allows an autonomous agent to: (i) learn probabilistic models of actions

through self-discovery and experience, (ii) utilize these learned models for inferring the

goals of human actions, and (iii) perform goal-based imitation for robotic learning and

human-robot collaboration. Such an approach allows a robot to leverage its increasing rep-

ertoire of learned behaviors to interpret increasingly complex human actions and use the

inferred goals for imitation, even when the robot has very different actuators from humans.

We demonstrate our approach using two different scenarios: (i) a simulated robot that

learns human-like gaze following behavior, and (ii) a robot that learns to imitate human

actions in a tabletop organization task. In both cases, the agent learns a probabilistic model

of its own actions, and uses this model for goal inference and goal-based imitation. We also

show that the robotic agent can use its probabilistic model to seek human assistance when

it recognizes that its inferred actions are too uncertain, risky, or impossible to perform,

thereby opening the door to human-robot collaboration.

Introduction
Considerable progress has been made in robotics in recent years, particularly in the area of
human-robot interaction. Techniques have been proposed to impart new skills to robots via
“programming by demonstration” [1] and “imitation learning” [2]. An important remaining
challenge is endowing a robot with the ability to infer the intentions of humans and to learn
new skills not by naively following demonstrated action trajectories (“trajectory-based” or
“action” imitation) but through goal-based imitation [3, 4].

Developmental scientists have shown that infants can infer the goal of an adult’s actions. In
one set of experiments with 18-month old infants [5], an adult actor demonstrated an act in
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which the goal-state was not achieved; infants were able to read through the literal body move-
ments to infer the underlying goal and execute the intended act. In other experiments, children
employed different means to achieve the same goal as adults. When given a barbell-shaped
object, adults used their hands to pull apart the object, but children who could not grasp the
end of an oversized barbell used alternative means (e.g., holding one end in both hands and
clasping the other end between their knees) to pull it apart. The children thus not only inferred
the adult’s goal but could also use novel alternative means to achieve the goal.

Clues to how children acquire the ability to infer goals have come from studies on gaze fol-
lowing, the ability of humans to follow the line of regard of another human. A naive interpreta-
tion of gaze following is that it is simply the imitation of head movement. However, Meltzoff
and Brooks [6] controlled for head movements and showed that infants’ tendency to follow
gaze varied as a function of whether or not the actor’s view was blocked by an intervening
opaque occluder (a blindfold). In particular, 18-month-old children did not follow the gaze of
an adult who made a head movement toward an object while wearing a blindfold. Younger
children (12-month-olds) did mistakenly follow the gaze of a blindfolded adult. However, after
these younger children were given the self-experience of a blindfold blocking their own view,
they no longer followed the gaze of the blindfolded adult.

These results highlight the importance of self-experience in the development of goal infer-
ence capabilities and goal-based imitation. They are consistent with Meltzoff’s “Like-Me”
hypothesis [7] which states that children utilize internal models learned through self-experi-
ence to interpret the acts and intentions of others, and with increasing experience, acquire
increasingly sophisticated intent recognition abilities. Such an approach is different from but
incorporates elements of two previous well-known theories of intent inference: (i) “simulation
theory” [8], which proposes that the same mental resources we use for thinking, decision-mak-
ing, and emotional responses are redeployed in imagination to provide an understanding of
others, and (ii) “theory theory” [9, 10], which advocates that children develop theories about
the world and about others, make predictive inferences about behaviors and inner states of oth-
ers using this network of beliefs (“theories”), and revise theories according to new observations.
The approach taken here differs by providing a rigorous mathematical framework based on
Bayesian inference of goals and actions, and the bootstrapping of Bayesian models through
learning from self-experience.

Methods
Our hypothesis is that humans use a goal-directed mechanism for planning motor acts. A goal,
provided by either an internal desire or external stimulus, together with the current state, deter-
mines what the action should be–this is called a “policy.” An action executed in a given state in
turn determines the next state (probabilistically). We represent these dependencies using the
graphical model shown in Fig 1a where G is the goal, A is the action, Xi is the current (or initial)
state, and Xf is the next (or final) state. Throughout this paper, we use upper case letters to
denote random variables and lower case letters to denote specific values of the variables.

Consider our two example scenarios. In the context of gaze following, the goal is a desired
fixation location, the action is a vector of motor commands to move the head, and the state rep-
resents head position and orientation. We discuss the model assuming movement of the head
but the model can be generalized to embody movement of the eyes or movement of both the
head and eyes to achieve a spatial target. In this case, the random variables (states, actions,
goals) are continuous-valued and we define the relationships between them using (learned)
probabilistic functions. In the case of our example of actions on objects, we assume the states
represent discrete locations on a table, actions comprise of high-level commands such as pick
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Fig 1. Graphical models for gaze following. (a) The graphical model shows the probabilistic dependencies between different random variables in the
model:G = goal, A = action, Xi = current state, and Xf = final state. The model captures how actions depend on goals and states, and how the state changes
as a consequence of executing an action; (b) incorporates the influence of blindfold self-experience on the model using the random variable B; (c) shows the
combined graphical models, one for the agent and a copy for the mentor (superscriptm), for following the gaze of a mentor. Shaded variables denote
observed variables. The darker shading indicates that B is an observed discrete variable, while the rest of the nodes are continuous.

doi:10.1371/journal.pone.0141965.g001
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and push, and the goal is a desired (discrete) location on the table. We use this example to illus-
trate the discrete formulation of the model in which the relationships between the discrete-val-
ued random variables are captured by (learned) probability tables.

Computational Model
Case I: Continuous-Valued Random Variables. We begin by showing how an agent can

learn the mapping between continuous-valued goals, states, and actions which can later be
used for planning and intent inference. The agent first learns a transition model f, (e.g., through
self-exploration using its own body movements, which [11] dubbed “body babbling”). This
translates an initial state, xi, and an action, a, to a final state, xf:

xf ¼ f ðxi; aÞ þ n; n � N ð0;SnÞ;

whereN(μ, S) signifies the normal distribution with mean μ and covariance matrix S.
To make the exposition concrete, we focus here on the specific case of modeling gaze follow-

ing, although the framework is general enough to apply to other types of behaviors. In gaze fol-
lowing, the initial and final state correspond to head poses while the action corresponds to motor
commands to move the head. The learned transition model can in turn be used to learn a “policy”
function, π, which maps an initial state and a goal location g to an appropriate action:

a ¼ pðg; xiÞ þ u; u � N ð0;SuÞ

This equation essentially determines the rotation required to turn the head from its current posi-
tion to face the goal.

We use two separate Gaussian processes (GPs) [12], GPf and GPπ, to learn the two nonlinear
functions f and π in the equations above. GPs are commonly used in machine learning to infer
a function h from noisy observations yi:

yi ¼ hðxiÞ þ n; n � N ð0; s2
nÞ

GPs are both flexible and robust. First, they are nonparametric so they do not limit the set of
functions that h can be chosen from. Second, they estimate a probability distribution over func-
tions instead of choosing a single most-likely function. This allows all plausible functions to be
incorporated into the estimation process and reduces model bias. For these reasons, GPs are
effective with small numbers of training samples, increasing their biological plausibility. We
now show how these GPs can be used for planning, goal inference, and gaze-following.

Goal-directed Planning. GPs are trained via supervised learning: given a training dataset
with noisy labels, the GP learns the functional mapping between the input data and the labels
(output). The training data could be obtained, for instance, through a reinforcement-based par-
adigm that combines exploration of the goal-action-state space for training the transition GP
with selection of data from successful trials for training the policy GP (see [3]).

After training, it is simple for the agent to fixate on a goal location. We assume that the
agent knows its current state xi and the goal g. Given these, the agent uses its learned distribu-
tion over functions, GPπ, to compute a probability distribution over actions, P(a) =N(μa, Sa).
This distribution can then be passed through GPf to estimate the probability of the resulting
state P(xf)�N(μxf, Sxf). Thus, our model provides both a prediction of the final position and
an estimate of the uncertainty in the prediction. We define the combined inference process P
(XfjXi = xi, G = g), as Forward Inference.

Goal Inference. One can also infer the goal of an observed action (e.g., head movement),
given starting and ending states (e.g., head poses), xi and xf, respectively. To accomplish this,
the agent must be able to recover the inputs to each GP, given the outputs. Fortunately, results
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from [13] allow us to estimate a distribution over the inputs given the outputs. We follow the
technique in [13] to infer a distribution over actions given xi and xf and then use this to esti-
mate a distribution over goals. We define the inference process P(GjXi = xi, Xf = xf) as Reverse
Inference.

Gaze Following. Gaze following of a mentor using the above model is accomplished by
invoking Meltzoff’s “Like-Me” hypothesis. The agent learns a model of its own head move-
ments and assumes that a mentor uses this same (or similar) model. As suggested by the graph-
ical model in Fig 1c, the agent observes the starting and ending states (head poses) of a mentor
and then infers the goal location indicated by the mentor, gm, by using a copy of its own learned
model and inferring what it would be looking at if it were in the mentor’s position. After infer-
ring the mentor’s goal, the agent transforms that goal into its own coordinate frame and then
infers how to fixate that goal. For this paper, we assume the agent has acquired the ability to
transform between coordinate frames through prior experience. We acknowledge that the
problem of transformation between the agent and mentor coordinate frames can be challeng-
ing in more complex tasks, and we refer the reader to relevant work in this area for further
information [14–16].

Modeling Blindfold Experiments in Human Infants. We first tested the continuous-val-
ued version of the model on a gaze-following task previously used in experiments in human
infants [6]. One set of experiments showed that 14- and 18-month olds do not follow the gaze
of an adult who is wearing a blindfold, although they follow gaze if the adult wears the same
band as a headband. This suggests that these children did not follow gaze because they are able
to take into account the consequences of wearing a blindfold (i.e., occlusion) and unlike the
12-month olds, make the inference that the adult is not looking at an object. This observation
is closely related to Meltzoff’s “Like me” hypothesis [7]. In particular, self-experience with own
eye closure and occluders may influence gaze-following behavior. To test this hypothesis,
Meltzoff and Brooks provided one group of 12-month olds with self-experience with an opaque
blindfold while two other groups either had no self-experience or had self-experience with a
windowed blindfold. On seeing an adult with a blindfold turn towards an object, most of the
children with self-experience with blindfolds did not turn to the object while the other two
groups did [6]. This highlights self-experience as a learning mechanism that can used to inter-
pret the behaviors of other agents.

To model these results, we incorporate a binary random variable B 2 {0,1} in the graphical
model, as shown Fig 1b, which denotes whether or not a blindfold is being worn, and allows the
agent to learn the effects of being blindfolded. Our model learns a new Gaussian process (GPB

p in
place ofGPπ) which is used when the agent is blindfolded. When the opaque blindfold is in place,
regardless of the current value of the goal state, no action leads to that goal location being fixated.
Goals in this case are not causally linked to states (head poses) or actions. The agent can learn
this and then apply this knowledge to a mentor agent to infer that the mentor does not have a
goal when blindfolded (i.e., the inferred distribution over goals approximates a uniformly ran-
dom distribution). However, if this alternate Gaussian process is not learned, the agent does not
know the consequences of wearing a blindfold and follows the mentor’s head movement even if
the mentor is blindfolded. Fig 1c shows the combined graphical model for following the gaze of
the mentor, based on combining a model for the agent and a copy for the mentor.

Case II: Discrete-Valued Random Variables
When the random variables for states, actions, and goals are discrete-valued, the model can be
expressed in terms of conditional probability tables for the transition probabilities P(XfjXi, A)
and the “policy” P(AjG, X).

A Bayesian Developmental Approach to Goal-Based Imitation Learning
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For concreteness, we describe this case in the context of a simple tabletop task involving a
set of small objects on a tabletop which can be moved around by a human or a robotic arm as
shown in Fig 2. The discretized position of an object defines its state and a goal corresponds to
the object reaching a particular state. The robotic arm can manipulate the state of any object
using a set of actions. We define OX to be the set of discrete states in the environment, OA to be
the set of all possible actions available to the robot (these can be different from the possible
actions of the human demonstrator) and OG to be the set of possible goal states. We assume all
three sets are finite.

Each goal g 2 OG represents an abstract task which can be achieved using one or more
actions in OA. For example, a goal can be moving an object to location A regardless of its start-
ing location. The object could be picked and placed at A, pushed to A, or transported using
some other action, but the goal remains the same. The dynamics of the action and its effect are
modeled as a Markov state-transition model (Fig 3a); when the robot in a state xi executes an
action ai, it enters a state xf with the transition probability P(Xf = xfjXi = xi, A = ai).

Learning Through Self-Experience. We assume that the transition probability distribu-
tion is initially unknown to the robot and must be learned through exploration, similar to the
manner in which infants explore the consequences of their actions through exploration and
“body babbling” [11, 17]. The robot collects training data tuples (x, a, x0) for the graphical
model in Fig 3a by executing a random action a from a random initial state x and observing a
resulting final state x0 multiple times. Given this training data, maximum likelihood parameter
estimation is used to learn parameters for the transition probability distribution P(XfjXi, A).

Fig 2. Robotic tabletop organization task setup. (a) The robot is located on the left side of the work area and the Kinect looks down from the left side from
the robot perspective. The three predefined areas that distinguish object states are notated. (b) Toy tabletop objects.

doi:10.1371/journal.pone.0141965.g002
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Goals and Goal Inference. After the transition parameters are learned, a goal-based
graphical model, G, is created by augmenting the initial model in Fig 3a with a new node G as
shown in Fig 3c. The robot then engages in goal-based exploration in which a goal state g is
chosen at random and for any given initial state Xi = xi, the robot performs Bayesian inference
to infer P(AjXi = xi, Xf = g). It samples an action A� from this distribution and executes this
action. If the goal g is reached, it increases the “policy” probability P(A = A�jG = g, Xi = xi) by a
small amount, and decreases P(A = A0jG = g, Xi = xi) for all other actions A0. An alternate
approach, which we follow here, is to directly set P(AjG = g, Xi = xi) = P(AjXi = xi, Xf = g). In
this case, the policy is based purely on the plan inferred from a learned transition model with-
out verification that a goal can be reached, so the policy’s accuracy will depend on the accuracy
of the transition model. For the simple tabletop experiment we illustrate here, we adopt the lat-
ter approach given that accurate transition models can be learned for the small state and action
space.

For goal inference, the robot observes object states xhi and x
h
f (e.g., object locations) from a

human demonstration. By invoking the “Like me” hypothesis, the robot uses its goal-based

Fig 3. Graphical models for robotic goal-based imitation. (a) through (f) illustrate the use of graphical models for learning state-transitions, action
inference, goal inference, goal-based imitation, and state prediction. Shaded nodes denote observed variables.

doi:10.1371/journal.pone.0141965.g003
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graphical model to compute the posterior distribution over goals G given xhi , and x
h
f , as depicted

in Fig 3d (note that the variable A is marginalized out during goal inference).
Goal-Based Imitation and Action Selection. Goal-based imitation is implemented as a

two-stage process: (i) the robot infers the likely goal of the human demonstration using the
goal-based graphical model described above, and (ii) either executes the action most likely to
achieve this goal, or seeks human assistance if the goal is found to be unlikely to be achieved.
Specifically, the robot senses the current state x0i using its sensors and infers the human’s goal
gMAP by taking the mode of the posterior distribution of G from the goal-inference step. It then
computes the posterior over actions A as shown in Fig 3e and selects the maximum a posteriori
action aMAP. Since aMAP is not guaranteed to succeed, the robot predicts the probability of
reaching the most probable final state x0f using aMAP by computing the posterior probability of

Xf as shown in Fig 3f. If this probability of reaching the desired state is above a prespecified
threshold, τ, the robot executes aMAP, otherwise it executes the “Ask human” action to request
human assistance.

Robot
We use the Gambit robot arm-and-gripper (Fig 2a) designed at Intel Labs Seattle. Gambit is
well-suited to tabletop manipulation tasks with small objects and has previously been shown to
perform well in tasks with humans in the loop [18].

Sensing. For sensing the current state of objects on the table, for example, during human
demonstrations, we use the Microsoft Kinect RGBD camera. The Kinect is mounted on the
base frame of Gambit and looks down on the table surface. The robot takes as input the stream
of RGB and depth images from the Kinect and first segments out the background and the hand
of the human holding the small objects. The remaining pixels are then used to determine the
state of objects on the table using a simple heuristic based on centroids. We define three dis-
crete areas that are used for defining the state of the objects as shown in Fig 2a–(1) “LEFT” sig-
nifying that the object is on the left side of the blueline on the table; (2) “RIGHT” denoting that
the object is on the right side of the blueline; and (3) “OFFTABLE” signifying that the object is
not in the tabletop work area.

Robot Action. We assume that the robot possesses a fixed set of six high-level actions for
manipulating objects: place LEFT (PlaceL), place RIGHT (PlaceR), place OFFTABLE (Pla-
ceOt), push to LEFT (pUshL), push to RIGHT (pUshR), and push OFFTABLE (pUshOt). For
the “place” actions, the robot first attempts to pick up the object by moving its end effector
above the centroid of the object and rotating the gripper to align itself perpendicular to the
major axis of the object. If the robot successfully picked up the object, it places the object down
at the location (LEFT, RIGHT, or OFFTABLE) indicated by the place command. For the
“push” actions, the robot first positions its end effector behind the object based on its centroid
and direction of the push. For pUshL and pUshR, the gripper yaw angle is rotated perpendicu-
lar to the major axis of the table, while for pUshOt, it is rotated parallel to the major axis of the
table. This ensures that object contact area is maximized to reduce the chance of the object slip-
ping while pushing. The robot pushes the object until it changes state (or the inverse kinemat-
ics solver fails to find a possible solution).

Results

Gaze Following: Model Simulations
To test our model, we randomly sample goal positions and then compute the action required
to fixate on this goal. We add Gaussian noise to this action, compute the resulting gaze vector if
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this action were taken, and add Gaussian noise to this gaze vector. This method is equivalent to
training the model with rejection sampling wherein the agent rejects all samples that do not
result in successful fixation on the goal position. The Gaussian processes are trained on this
randomly generated data and then tested on separate test data. The default reference frame for
both agent and mentor is at the origin gazing along the x-axis. Each agent has their own refer-
ence frame and we assume that we know the transformation from the mentor’s reference frame
to the agent’s. This transformation is not learned by our model but we believe that this is a
minor assumption, especially since we already assume the agent can observe the mentor’s posi-
tion and head pose.

The mentor and agent are positioned as shown in Fig 4. Goal locations for the training data
were generated uniformly at random from the area between the agent and the mentor (within
the rectangle formed by x in [100, 500] and y in [−500,500], where the agent is at (0,0) and the
mentor is at (600,0)). We used Gaussian noise with standard deviation of 3 degrees for angles
and a standard deviation of 10 cm for locations and distances. For reverse inference, the prior
goal state P(G) is a Gaussian centered halfway between the two agents along the x-axis. While
this prior is quite weak, a single observation of (xi, xf) is insufficient to overcome the prior in
reverse inference. Instead, we use a single observation of xi and five observations of xf to get an

Fig 4. Gaze following results. The agent and mentor face each other in a 2D simulated environment. Goal
positions inferred by the model frommentor observations are shown in red next to true goal positions (blue)
for sampled goal positions both to the left and to the right of the agent. Black arrows represent the initial and
final gaze vectors of the agent and mentor for one of these test data points. In this simple example, the goal
locations were equidistant from the agent and mentor but the model readily generalizes to other cases as
well.

doi:10.1371/journal.pone.0141965.g004
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accurate estimate of the goal distribution P(Gjxi, xf). More precisely, we run reverse inference

with the observed values ðxi; xð1Þf Þ to compute PðG j xi; xð1Þf Þ, and then use this as the prior for a

second run of reverse inference to compute PðG j xi; xð1:2Þf Þ. We repeat this five times to com-

pute PðG j xi; xð1:5Þf Þ. We believe such an inference process could be executed within the short

amount of time taken for gaze following.
Gaze Following: Model Performance. We found that the model learns accurate transition

and policy functions from small amounts of noisy training data (n = 200 data points in our
accuracy tests). The nonparametric nature of Gaussian processes ensured very little customiza-
tion was required. The model runs in sub-minute times for the dimensionality we are using,
though additional approximations may be necessary to scale well to high dimensions. We also
found that the Gaussian approximations we are making have little effect because the data is
generally unimodal and close to symmetric.

Figs 4 and 5 show performance results for the model as it performs forward inference,
reverse inference, and gaze following (combined reverse and forward inference). The model is
robust to noise and is able to provide accurate gaze following results even though additional
levels of uncertainty are introduced by the second level of inference.

Blindfold Self-Experience Task. In order to test the cognitive plausibility of our model,
we recreated the experiments from [6], where infants’ self-experience with a blindfold affects
whether or not they follow the gaze of blindfolded adults (see Fig 1c). We trained 60 separate
agents with our model on randomly generated training data. Similar to the infant experiments,
one third of these agents were given additional experience with a blindfold wherein they train
an additional GPπ for their model so that they now have GPπ and GPB

p , where GPπ is the origi-
nal GP of the model and GPB

p is the GP with blindfold experience. The agents with the blindfold
experience learn the consequences of wearing an opaque blindfold in GPB

p . The other 40 agents
were trained normally although one group is the baseline group and the other is the windowed
blindfold group. In our simulations, the windowed blindfold group experiences the same train-
ing data as the no-blindfold case since, in both cases, the overall result is that the target is visible
to the agent. So these two groups will be identical except for noise.

Fig 5. Accuracy of goal inference and gaze following. Histogram plots showing the probability of an error (in degrees) between the inferred and the true
gaze vector–the gaze vectors in the final state Xf were used for (a) and (c), and the gaze vectors in the the goal stateG were used for (b). These probabilities
were estimated from 375 test points spread uniformly over the test region. Note how the accuracy gracefully decays as more complicated inference is
performed ((a) is the simplest, while (c) is the most complex).

doi:10.1371/journal.pone.0141965.g005
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Each agent is presented with 4 trials where it observes a mentor make a head turn to face
either 45 degrees to the left or 45 degrees to the right (plus noise). Trials are scored as +1 if the
agent turns its head at least 30 degrees in the direction of the correct target and −1 if it turns its
head at least 30 degrees in the direction of the wrong target. The agents with no blindfold expe-
rience use the basic model (which contains no blindfold knowledge) and thus assume that the
mentor is fixating on an object to the left or to the right. Those with blindfold experience
observe that the mentor is wearing a blindfold and use their learned GPB

p for the reverse infer-
ence (applying their model to the mentor). For this group, we expect the agent to have learned
through self-experience that when blindfolded, there is no correlation between a head move-
ment and any particular goal position. The blindfold-experienced agent then uses GPπ for the
forward inference (because the agent is not wearing a blind-fold). In order to simulate infants
with little experience with blindfolds, we provided the agents in this experiment with very little
training data (n = 15). If we use more training data, the agents perform almost perfectly in this
task.

Results are shown in Fig 6 and match the pattern of results in Meltzoff and Brooks (repro-
duced in Fig 6a for comparison). This suggests that gaze following involves understanding the
underlying intention or goal of the mentor, and that self-experience plays a major role in learn-
ing the consequences of intentions and related actions.

Robotic Tabletop Manipulation Task
To illustrate the discrete-valued version of the model, we used a tabletop manipulation with
three toy objects of different shapes: a “pear,” a “lemon,” and a miniature “broiled chicken.”
These objects could be in one of three different states: LEFT, RIGHT, and OFFTABLE, as
defined in the previous section. The robot’s aim is to learn the consequences of actions on
these objects, infer the goals of human actions, and imitate the actions of humans manipulating
these objects on the table.

Fig 6. Comparison of the model to infant data from [6]. Error bars represent standard error of means.

doi:10.1371/journal.pone.0141965.g006
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Fig 7 shows the learned transition probabilities for manipulating these objects based on the
robot’s self-discovery phase. The transition models are learned by performing 10 trials for each
initial state and action pair (xi, a) for each object type. We deliberately used a small number of
trials to test whether the method could cope with less training data and more uncertainty in the
transition model.

Since the state space is small, we are able to enumerate and test all of the interesting and pos-
sible human demonstrations. By interesting, we mean that the state changes after action execu-
tion (for example, from RIGHT to OFFTABLE) and the initial state is not OFFTABLE. There
are in total four interesting state changes for each object that can be demonstrated by a human:
LEFT to RIGHT, LEFT to OFFTABLE, RIGHT to LEFT, and RIGHT to OFFTABLE. Note that
our current implementation does not allow the robot to pick up objects that are located
OFFTABLE

Fig 8a shows the inferred goals given all possible interesting state changes, using the graphi-
cal model in Fig 3d. For all cases, our model correctly infers the intended goal state of the
human. Fig 8b shows the maximum a posteriori probability (MAP) action for a given initial
state and goal. Our model correctly identifies whether a “place” or a “push” action is better,
given the dynamics of the object as encoded in the learned probabilistic model for the object.
Note that the two most preferred actions are always push or place actions in the correct
direction.

Finally, Fig 8c shows the predicted state distribution given an action and an initial state. The
robot calculates the posterior probability of getting to the desired state, and executes the action

Fig 7. Robotic task: Learned transition model. Each row represents different types of objects, and each column represents the different initial states Xi.
The colors of bars represent different final states Xf. The y-axis represents the range of probabilities and the x-axis represents the six different manipulation
actions available to the robot (PL = place LEFT, PR = place RIGHT, PO = place OFFTABLE, UL = pUsh LEFT, UR = pUsh RIGHT, UO = pUsh OFFTABLE).
We do not show actions that cause self-transitions given an initial state.

doi:10.1371/journal.pone.0141965.g007
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Fig 8. Robotic task: Results. (a)Most likely goals: Initial and final states are at the top of each column. The
height of the bar represents the posterior probability of each goal state, with the true goal state marked by an
asterisk. (b) Inferring actions: For each initial and desired final state, the plots show the posterior probability
of each of the six actions, with the MAP action indicated by an asterisk. (c) Predicting final state: The plots
show the posterior probability of reaching the desired final state, given the initial state and the corresponding
MAP action shown in (b). The red bar marks 0.5, the threshold below which the robot asks for human help in
the Interactive Goal-Based mode.

doi:10.1371/journal.pone.0141965.g008
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if this probability is above a predetermined threshold (%50). Otherwise, it asks the human col-
labo For example, the predicted output of moving a pear from RIGHT to LEFT (1st row of 3rd
column in Fig 8c) using the pushing left action is lower than %50, and therefore the robot will
ask request the human help.

Table 1 compares “trajectory-based” imitation of the human demonstration with our pro-
posed goal-based approach. The trajectory-based approach simply mimics the human action
without considering the goal or uncertainty, i.e., it executes a place action if the human executes
a place, and a push action if the human executes a push. The goal-based approach on the other
hand recognizes the goal and uses the best action it has available to achieve the goal.

Using our computed transition probabilities, we can calculate the hypothetical success rate
of a purely trajectory-based approach. For our goal-based approach, we use the posterior distri-
bution shown in Fig 8b. Finally, the “Interactive Goal-Based”mode assumes that the robot
may ask a human for help, with a 100% success rate when the human executes the requested
action. The third column in Table 1 shows what the performance would be if we require the
robot to be 50% sure of reaching a desired state. We do not see perfect imitation results on the
third column because the robot does not ask the human for help in every case. In some cases,
the probability of success will surpass the confidence threshold, but the goal state may not be
reached after the action is executed.

The results demonstrate the expected behavior of the goal-based method. The success rates
in goal-based method (Table 1, second column) are identical across the different actions dem-
onstrated (e.g. pick & place row vs. push row). In addition, the results demonstrate the advan-
tage of a goal-based approach over purely trajectory-based imitation, and its potential as a
human-robot collaboration mechanism.

Contributions and Comparisons with RelatedWork
Our work makes contributions both to the fields of robotics and cognitive modeling. In robot-
ics, our approach contributes to the growing number of efforts leveraging biological paradigms
and developmental science to design new methods for social robotics and human-robot inter-
action [17, 19–30]. Specifically, our proposed framework for goal inference and imitation lays

Table 1. Comparison of approaches.

Trajectory Goal-Based Interactive Goal-Based

Pick & Place Demonstration

Pear 0.2250 0.6750 0.8250

Lemon 0.5250 0.6750 0.6750

Chicken 0.6500 0.8000 0.8000

Push Demonstration

Pear 0.6750 0.6750 0.7250

Lemon 0.5750 0.6750 0.6750

Chicken 0.7250 0.8000 0.8000

The hypothetical success rates of three different approaches to imitation are shown. The success rate

shown in each cell is averaged over four interesting state changes mentioned in the main text. The

boldfaced results indicate the row-wise highest success rates, and the cases where the robot’s request for

human help improved success the rates are shown in italic.

doi:10.1371/journal.pone.0141965.t001
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the foundation for a new approach to designing social robots as robots that learn internal mod-
els of their environment through self-experience and utilize these models for human intent rec-
ognition, skill acquisition from human observation, and human-robot collaboration. Although
our results are based on proof-of-concept systems, the underlying Bayesian framework is gen-
eral. We anticipate being able to progressively increase the sophistication of our models by
leveraging the rapid advances being made in probabilistic reasoning, Bayesian modeling, and
learning. As an illustrative example, the success of simultaneous localization and mapping
(SLAM) algorithms in robotics [31] in the past decade can be largely attributed to the availabil-
ity of efficient algorithms and computing platforms for probabilistic reasoning, within the
broader context of probabilistic robotics [32].

Our approach to robotic imitation emphasizes the importance of goal inference in imitation
learning, compared to traditional methods for programming-by-demonstration that have
relied on following action trajectories. Previous approaches to robotic imitation that have also
relied on high-level goals (e.g., [33, 34]) have not emphasized self-discovery of probabilistic
models, a central tenet of the developmental approach proposed here for bootstrapping goal-
based imitation. Other robotics work has focused on attempting to model continuous low-level
goals [35]. Neither of these approaches adopt probabilistic models for human-robot interaction
tasks. Approaches that do utilize Bayesian methods for goal inference [36, 37] and robotic imi-
tation [38] have done so without the developmental science perspective that we bring to the
problem.

In the context of cognitive modeling, our model can be regarded as a Bayesian instantiation
of the “Like-Me” developmental hypothesis [7, 39]. It acknowledges a role for a certain type of
mental simulation [8] as well as a learned “theory” [9, 10] of actions and their consequences
using a probabilistic model learned from experience (see also [40]). The model is closely related
to the goal-based imitation model of Verma and Rao [3, 17, 41] and the inverse planning
model of Baker et al. [42]. Also related to our approach are models for planning based on prob-
abilistic inference [3, 43–46].

Meltzoff’s “Like-Me” hypothesis has previously been applied in robotics to tackle the impor-
tant problem of “whom to imitate” [47]: In this case, a robot first builds a self model, and then
uses this self-model to discover self-other equivalences with other robots so as to distinguish an
appropriate from an inappropriate “mentor” robot. Note that in this case as well as in our own
work, the “mentor” agent is not necessarily an active teacher but is only being observed (cf.
[48]). A recent developmental approach to robotic imitation [49] also focuses on tabletop
manipulation tasks, with greater complexity than our experiments, but without the benefits of
bootstrapping derived from the “Like-Me” hypothesis inherent in our framework.

Summary and Conclusion
Our results suggest that the process of imitation-based learning can be bootstrapped by (i) learn-
ing a probabilistic model of the perceptual consequences of one’s own actions through self-expe-
rience, (ii) using this learned model to infer the goals of actions of others, and (iii) using the
inferred goals to perform goal-based imitation. Such a strategy works even when the imitator’s
actuators are different from the demonstrator’s. We first showed how such a model can emulate
infant development of gaze following by implementing gaze following via goal inference in
learned graphical models based on Gaussian processes. Using a table-top robotic system, we
demonstrated that a robot can learn probabilistic models of actions on objects and utilize these
models for inferring the intent of human actions on objects. Additionally, we showed that the
approach facilitates human-robot collaboration by allowing the robot to predict the success prob-
ability of achieving a goal and to seek human help when success probability is low.
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Our results point to a number of interesting open issues. For the studies in this paper, we
used a simple exhaustive exploration strategy, but for larger state spaces, a more sophisticated
approach based on reward functions (e.g., [50]) could be employed. Additionally, following the
example of human infants, some form of directed self-exploration based on observing human
mentors (e.g., [51]) may be desirable. The model assumes that states in the environment are
known (corresponding to the case of MDPs or Markov decision processes)–an interesting
direction for future work is extending the model to the more realistic case where only observa-
tions of states are available (partially observable MDPs or POMDPs) and where learning
involves optimizing rewards. Finally, our current model involves inference over a single time-
step, which simplifies the inference problem. We hope to explore the applicability of our model
for multi-step inference problems in future work.

The approach we have presented lends itself naturally to generalization based on relational
probabilistic models [52, 53] and hierarchical Bayesian representations [54]. Such models have
the potential to significantly increase the scalability and applicability of our suggested approach
to large-scale scenarios, besides facilitating transfer of learned skills across tasks and domains.
We intend to investigate such relational models in future work.
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